Xantha Karp
​​Xantha KarpAssistant Professor
Biology
Brooks Hall 183 (Office)
Brooks Hall 302 (Lab)
989-774-1267
Personal Web Page



Education
  • B.S., University of Toronto, 1995
  • Ph.D., Columbia University, 2004
Teaching Areas

Cell Biology and Genetics

Research Fields

Genetics, Developmental Biology, Cell Biology

Current Research Projects

The development of many stem cells and progenitor cells is interrupted by a period of quiescence, which is a reversible non-proliferating state. Quiescent progenitor cells must "remember" their precise place in their developmental program, neither differentiating prematurely, nor losing their tissue identity. We use the microscopic nematode C. elegans to investigate how this is accomplished. When young C. elegans larvae are cultured in adverse environmental conditions they pause their development by entering dauer quiescence, an arrested, non-aging and stress-resistant stage. If conditions improve, dauer larvae recover and complete development normally. This indicates that progenitor cells in wild-type dauer larvae maintain their developmental potential, or the ability to give rise to all proper cell types. My lab uses genetic screens to discover the mechanisms that enable the maintenance of developmental potential during dauer quiescence.

Selected Publications
  • Karp X., Greenwald I. (2013). Control of cell fate plasticity and maintenance of multipotency by DAF-16/FOXO in quiescent Caenorhabditis elegans. PNAS. 110: 2181-2186.
  • Karp X., Ambros V. (2012). Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans. Development. 139: 2177-2186.
  • Karp X., Hammel M., Ow MC, Ambros V. (2011). Effect of life history on microRNA expression during C. elegans development. RNA. 17: 639-651.
  • Karp X., Ambros V. (2011). The developmental timing regulator hbl-1 modulates the dauer formation decision in C. elegans. Genetics. 187(1): 345-353.
  • Hammell CM*, Karp X*, Ambros V. (2009). A feedback circuit involving let-7-family microRNAs and DAF-12 integrates environmental signals and developmental timing in C. elegans. PNAS. 106(44): 18668-18673. *Equal contribution