Problem #499
Solution

The area of \(\triangle ABC \) is 1. Point \(D \) on \(BC \) is one third of the way from \(B \) to \(C \), point \(E \) is one third of the way from \(C \) to \(A \), and point \(F \) is one third of the way from \(A \) to \(B \). Find the area of \(\triangle GHI \).

[Diagram of \(\triangle ABC \) with points \(D, E, F, G, H, I \) labeled]

Answer: \(\frac{1}{7} \).

Proof. Let \(K_{XYZ} \) denote the area of triangle \(XYZ \). Let \(k = K_{AIF} \). We have \(K_{BIF} = 2K_{AIF} = 2k \) because the triangles have the same height and \(BF = 2AF \). Therefore \(K_{AIB} = 3k \). Similarly, \(K_{CAD} = 2K_{BAD} \). Now \(K_{BAD} = \frac{1}{3}K_{ABC} = \frac{1}{3} \), so

\[
K_{BID} = \frac{1}{3} - K_{AIB} = \frac{1}{3} - 3k.
\]

By the usual reasoning, \(K_{CID} = 2K_{BID} = \frac{2}{3} - 6k \). Therefore
\[
K_{CAI} = \frac{2}{3} - K_{CID} = 6k.
\]
However, \(K_{CAF} = \frac{1}{4}K_{ABC} = \frac{1}{3} \). If follows that \(K_{AIF} = \frac{1}{3} - 6k = k \), so \(K_{AIF} = \frac{1}{21} \). By symmetry,

\[
K_{AIF} = K_{BGD} = K_{CHE} = \frac{1}{21}.
\]

Now \(K_{AIHE} = K_{CAF} - K_{CHE} - K_{AIF} = \frac{1}{3} - \frac{1}{21} - \frac{1}{3} = \frac{5}{21} \). By symmetry,

\[
K_{AIHE} = K_{BGIF} = K_{CHGD} = \frac{5}{21}.
\]

Finally,

\[
K_{GHI} = 1 - (K_{AIF} + K_{BGD} + K_{CHE}) - (K_{AIHE} + K_{BGIF} + K_{CHGD}) = 1 - 3\cdot \frac{1}{21} - 3\cdot \frac{5}{21} = \frac{1}{7}.
\]

Source: This is an oldie but a goodie.