A positive integer is said to *cute* if it can be written as a product of numbers that have only a single digit when written in base ten. For example, $1890 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 9$ and $250 = 2 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ are cute, but 143 is not cute because it is divisible by 11. Note that 11 is prime, so it cannot be written as a product of single digit numbers.

1. 2015 may be written as a sum of two cute numbers because $2015 = 2000 + 15$. Is there another way to write 2015 as a sum of two cute numbers? Find another such representation or else prove that this is impossible.

2. Find a cute number whose last two digits are 57, or else prove that no such number exists.

Rules

1. Anyone is eligible to participate. Each solution is to be the work of one individual without any input from faculty or others. An answer must be accompanied by appropriate justification to be considered correct.

2. The solution is to be submitted with the solver’s name, email, year in school (if applicable), local phone number, and local address. If you are submitting this for possible credit in a class, include your class number and instructors name.

3. The solution is to be typed or legibly written. Solutions must be submitted to the Mathematics Department Office (PE 214) by 2 p.m. on the due date.

4. Entries will be graded on clarity of exposition and elegance of solution. An award of $10 will be given for the best correct solution. In the case of a two-way tie, the award will be split. If there are more than two best solutions, a drawing will be held to determine two award winners. If no correct solution is presented by an undergraduate student, the award will be carried over to the following week.

5. Graduate students, faculty, and members of the general public are encouraged to submit solutions, but they will not be considered for the monetary award.

6. Names of all solvers will be posted across the Mathematics Department Office within one week of the due date.