Problem #503
Solution

In the multiplication problem below, each letter represents a different digit:

\[
\begin{array}{cccccc}
A & B & C & D & E \\
\times & & & & F \\
\hline
G & G & G & G & G & G
\end{array}
\]

Find all possible choices for digits A through G.

Answer: The unique choice is \(ABCDE = 95238 \), \(F = 7 \), \(G = 6 \).

Proof. Note that \(GGGGGG = G \cdot 111111 = G \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 37 \). It follows that \(ABCDE \) is divisible by \(11 \cdot 13 \cdot 37 = 5291 \), so \(ABCDE \) is a multiple of 5291. If \(F | G \), then

\[
99999 > ABCDE = \frac{GGGGGG}{F} = 111111 \cdot \frac{G}{F} > 1111111,
\]

which is a contradiction. Consequently, one of the two numbers 3 or 7 must divide \(ABCDE \) and the other must divide \(F \).

It follows that

\[
ABCD = k \cdot 5291,
\]

where either 3 or 7 divides \(k \). If \(7 | k \), then \(ABCDE \) is a multiple of \(7 \cdot 5291 = 37037 \). However, the only five digit multiples of 37037 are 37037 and 74074, and neither one meets the necessary condition that the digits are all distinct. Thus \(k \) is a multiple of 3, \(ABDCE \) is a multiple of \(3 \cdot 5291 = 15783 \), and \(F = 7 \). The five-digit multiples of 15783 are

\[
15783, 31746, 47619, 63492, 79365, \text{ and } 95238.
\]

All but 63492 and 95238 can be eliminated because the others all contain the digit 7. Now 63942 \(\star 7 = 444444 \), and this would imply that 4 is represented by both \(D \) and \(G \). The only remaining choice is \(ABCDE = 95238 \), and this gives \(G = 7 \cdot 95238/111111 = 6 \).

Source: New Puzzles in Logical Deduction by George Summers.