Problem #505
Solution

Note that when \(n = 12 \), \(n \) and \(n + 6 \) have the same set of prime factors because \(12 = 2^2 \cdot 3 \) and \(12 + 6 = 2 \cdot 3^2 \). Are there infinitely many positive integers \(n \) such that \(n \) and \(n + 6 \) have the same prime factors? If so, prove it. If not, find the largest integer \(n \) such that \(n \) and \(n + 6 \) have the same prime factors.

Answer: The largest \(n \) such that \(n \) and \(n + 6 \) have the same prime factors is 48.

Proof. Clearly 48 = \(2^4 \cdot 3 \) and 48 + 6 = \(2 \cdot 3^3 \) have the same prime factors. Assume that \(n \) is an integer such that \(n \) and \(n + 6 \) have the same prime divisors. We will show that \(n \) ≤ 48.

Note that if \(p \) is prime dividing \(n \), then \(p \) divides 6. Accordingly, \(p = 2 \) or \(3 \), and \(n = 2^a3^b \) and \(n + 6 = 2^c3^d \) for non-negative integers \(a, b, c, d \). We distinguish three cases.

1. \(n = 2^a \), with \(a > 0 \).
2. \(n = 3^b \), with \(b > 0 \).
3. \(n = 2^a3^b \), with \(a > 0 \) and \(b > 0 \).

In case 1, \(n + 6 \equiv n \pmod{3} \), so \(n + 6 = 2^c \). Accordingly, \(2^c - 2^a = 2^a(2^a - c - 1) = 6 = 2 \cdot 3 \). It follows that \(a = 1 \) and \(n = 2 \). In case 2, \(n + 6 \equiv n \pmod{2} \), so \(n + 6 = 3^d \). Accordingly, \(3^d - 3^b = 3^b(3^d - b - 1) = 6 \). It follows that \(b = 1 \) and \(n = 3 \).

In case 3, \(2^a3^d - 2^a3^b = 6 \). Writing \(x = c - 1, y = d - 1, a = v - 1, b = w - 1 \), we get

\[2^x3^y - 2^v3^w = 1 \]

(1)

with \(x, y, v, w \) all \(\geq 0 \). Considering this equation mod 2 and mod 3, we see that either \(x = w = 0 \) or \(y = v = 0 \).

If \(y = v = 0 \), then \(2^x - 3^y = 1 \). If \(x \leq 2 \), then \(n = 2^x13 - 6 \leq 18 < 48 \). If \(x > 2 \), then \(3^y \equiv 7 \pmod{8} \), which is impossible.

If \(x = w = 0 \), then \(3^y - 2^v = 1 \). If \(v \leq 3 \), then \(n = 2^v + 3 \leq 48 \). If \(v \geq 4 \), then \(3^y \equiv 1 \pmod{16} \), and so \(y \equiv 0 \pmod{4} \). Consequently, \(3^y \equiv 1 \pmod{5} \). However, we then have \(2^v \equiv 0 \pmod{5} \), which is impossible. \(\square \)

Source: S. W. Graham, J. Holt, and C. Pomerance, Solutions of \(\phi(n) = \phi(n+k) \), *Number Theory in Progress, Proceedings of the International Conference on Number Theory in Honor of the 60th birthday of Andrzej Schinzel*, Walter de Gruyter, 1999, pp. 867-882.