Algebra Qualifying Exam
August, 2009

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Prove that $(\mathbb{Z}/32\mathbb{Z})^\times$ is not cyclic.

2. Let D_{16} be the dihedral group of order 16 and let s and r be the commonly used generators for reflection and rotation respectively. Let H denote the subgroup generated by r^4 and sr^2.
 (a) Determine the isomorphism type of H.
 (b) It is known that D_{16} has three subgroups of order 8:

$$\langle s, r^2 \rangle, \langle r \rangle, \langle sr, r^2 \rangle$$

Determine the centralizer $C_{D_{16}}(H)$ and the normalizer $N_{D_{16}}(H)$.

3. (a) Prove that no group of order $84 = 2^2 \cdot 3 \cdot 7$ is simple.

(b) Let G be a group of order $2^k \cdot 3 \cdot 7$. Follow steps i through iii to prove that if $k \geq 19$, then no group of order $2^k \cdot 3 \cdot 7$ is simple.

We use \mathcal{P} to denote the set of all Sylow 2-subgroups of G.

i. Describe the number of elements in \mathcal{P}.

ii. Prove that there exists a group homomorphism $\varphi : G \rightarrow S_{21}$ induced by conjugating elements in \mathcal{P}.

iii. It is a fact that $2^{19} \nmid 21!$. (You may assume this without proof.) Prove that if $k \geq 19$, then the group homomorphism φ is not injective. Deduce that G is not a simple group.
4. Let \(x^3 - 2x + 1 \) be an element of the polynomial ring \(E = \mathbb{Z}[x] \) and use the bar notation to denote passage to the quotient ring \(\mathbb{Z}[x]/(x^3 - 2x + 1) \). Let \(p(x) = x^3 + 2x^2 - 1 \) and let \(q(x) = (x - 1)^4 \).

 (a) Express each of \(\overline{p(x)} + \overline{q(x)} \) and \(\overline{p(x)} \overline{q(x)} \) in the form of \(\overline{f(x)} \) for some polynomial \(f(x) \) of degree \(\leq 2 \).

 (b) Prove that \(\overline{E} \) is not an integral domain.

 (c) Prove that \(\overline{x} \) is a unit in \(\overline{E} \).

5. Prove that a finite integral domain is a field. Deduce that if \(R \) is a finite commutative ring with identity, then every prime ideal of \(R \) is a maximal ideal.

6. (a) Determine the splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \), denoted \(E \).

 (b) Let \(G \) be the Galois group of \(E \) over \(\mathbb{Q} \). For each subgroup of \(G \), including \(G \) itself, determine its corresponding fixed field.

7. (a) Find the minimal polynomial of \(\sqrt{5} + 2\sqrt{6} \) over \(\mathbb{Q} \). Determine the degree of the extension field \(\mathbb{Q}(\sqrt{5} + 2\sqrt{6}) \) over \(\mathbb{Q} \). (You must address the irreducibility of the polynomial.)

 (b) Prove that the extension in part (a) is a Galois extension, and determine the isomorphism type of its Galois group.