Analysis Qualifying Exam: September 4, 2009

MTH 632: Provide complete solutions to 5 of the 6 questions.

Notation: \(\mathbb{Q} \) denotes the set of rational numbers and \(\mathbb{R} \) denotes the set of real numbers.

1. Assume \(A, B, G \subset \mathbb{R} \) and \(m^* \) is Lebesgue outer measure on \(\mathbb{R} \). Here \(\tilde{G} \) denotes the complement of \(G \).

 (a) Suppose \(G \) is measurable and \(A \subset G \) and let \(B \) be such that \(B \cap G = \emptyset \). Show \(m^*(A \cup B) = m^*(A) + m^*(B) \).

 (b) Suppose \(A \) and \(B \) are such that \(\text{dist}(A, B) = \inf\{|x - y| : x \in A, y \in B\} > 0 \). Show \(m^*(A \cup B) = m^*(A) + m^*(B) \).

2. Let \(f(x) = \begin{cases} x(1-x) & ; \quad x \in [0,1] \setminus \mathbb{Q} \\ 1 & ; \quad x \in [0,1] \cap \mathbb{Q} \end{cases} \). Find \(\int_{[0,1]} f \, dm \). Is \(f \) Riemann integrable? Explain your answer.

3. Let \(f \in L^1(\mathbb{R}) \). Show there is a sequence \(\{x_n\} \subset \mathbb{R} \) with \(\lim_{n \to \infty} x_n = \infty \) such that \(\lim_{n \to \infty} x_n f(x_n) = 0 \).

4. Let \(g \) be a function defined on \(\mathbb{R} \) such that there is a constant \(\lambda > 0 \) such that

\[
|g(x) - g(y)| \leq \lambda |x - y|, \quad \forall x, y \in \mathbb{R},
\]

i.e. \(g \) satisfies a Lipschitz condition on \(\mathbb{R} \) and is hence continuous. Let \(f \in L^1([a, b]) \). Show \(g \circ f \), the composition of \(f \) and \(g \) is Lebesgue integrable on \([a, b] \).

5. Let \(\{f_n\} \) be a sequence of integrable functions defined on a measurable set \(E \subset \mathbb{R} \). The sequence \(\{f_n\} \) is said to be equi-integrable on \(E \) if \(\forall \epsilon > 0, \exists \delta > 0 \) such that \(\forall \) measurable sets \(A \subset E \) with \(m(A) < \delta \) we have \(\int_A |f_n| \, dm < \epsilon, \forall \ n \). Suppose \(\{f_n\} \) is a convergent sequence, say \(f_n \to f \), of equi-integrable functions on a measurable set \(E \), \(m(E) < \infty \). Then \(\lim_{n \to \infty} \int_E f_n \, dm = \int_E f \, dm \).

6. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on a set \(E \) such that \(\lim_{n \to \infty} \int_E f_n \, dm = 0 \). Show \(\{f_n\} \) converges to zero in measure. Show convergence in measure cannot be replaced with convergence almost everywhere.
MTH 636: Provide complete solutions to 6 of the 7 questions

1. Let \(f(z) = \begin{cases} \frac{x^{\frac{1}{2}} y^{\frac{3}{2}} + iz^2 y^\frac{1}{2}}{x^2 + y^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases} \)

Show that the Cauchy-Riemann equations hold at \(z = 0 \), but \(f \) is not differentiable at \(z = 0 \).

2. If \(f(z) = u(x, y) + iv(x, y) \) is entire such that \(au + bv \geq c \) for some real numbers \(a, b, \) and \(c \), must \(f \) be constant? Prove your answer.

3. Let \(g \) be a continuous complex-valued function of a real variable on \([0, 2] \), and for each complex number \(z \) define

\[F(z) := \int_0^2 e^{z t} g(t) dt. \]

Prove that \(F \) is entire, and find its power series around the origin.

4. Find the Laurent series for the function

\[f(z) = \frac{z}{(z+1)(z-2)} \]

in each of the following domains:

(a) \(|z| < 1 \)
(b) \(1 < |z| < 2 \)
(c) \(2 < |z| \)

5. Does there exist a function \(f(z) \) analytic in \(|z| < 1 \) and satisfying

\[f\left(\frac{1}{2}\right) = \frac{1}{2}, \quad f\left(\frac{1}{3}\right) = \frac{1}{3}, \quad f\left(\frac{1}{4}\right) = \frac{1}{4}, \quad f\left(\frac{1}{5}\right) = \frac{1}{5}, \quad \ldots, \quad f\left(\frac{1}{2n}\right) = \frac{1}{2n}, \quad f\left(\frac{1}{2n+1}\right) = \frac{1}{2n}, \quad \ldots \]

Justify your answer.

6. Show that all roots of \(z^5 - 3z^2 - 1 = 0 \) lie inside the circle \(|z| = 2^{\frac{3}{4}} \) and two of its roots lie inside the circle \(|z| = \frac{3}{4} \).

7. Prove that \(\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 9)^2} dx = \frac{\pi}{6} \).