Department of Mathematics
Ph.D. Qualifying Examination
Time: 180 minutes

Statistics

May 18, 2007

General Instructions:
- There are two parts in this examination. Part A (STA 584) has 9 questions and Part B (STA 684) has 5 questions.
- Begin each question on a new sheet with the question number clearly labeled. Write on one side only. When finished, please arrange all pages according to the question numbers and then number the pages accordingly.
- You must show all your work correctly to earn full credits. Partial credits will be given for partially correct solutions.

Part A [Answer all questions]

1. In a certain community, 8% of all adults over 50 have diabetes. If a health service in this community correctly diagnoses 95% of all people with diabetes as having the disease and incorrectly diagnoses 2% of all persons without diabetes as having the disease, find the probabilities that a person over 50 diagnosed by the health service as having diabetes actually has the disease.

2. A random variable X has a gamma distribution if and only if its probability density is given by $f(x) = \begin{cases} kx^{\alpha-1}e^{-x/\beta} & \text{for } x > 0 \\ 0 & \text{elsewhere} \end{cases}$ where $\alpha > 0$ and $\beta > 0$.
 a) Find k.
 b) Derive the moment generating function of X.
 c) Use your result of part (b) to find the mean and variance of X.
 d) Use your result of part (b) to find the moment generating function of an exponential random variable with a mean of λ.
 e) Use your result of part (c) to find the mean and variance of a chi-square random variable with n degrees of freedom.

3. Suppose that the joint density function of X and Y is defined by
 \[f(x, y) = \begin{cases} 10xy^2, & 0 < x < y < 1 \\ 0 & \text{elsewhere} \end{cases} \]
 a) What is density function of X given $Y = y$?
 b) Find the conditional mean of X given $Y = y$.
 c) Find the conditional probability $P(X > 1/2 | Y = 1/4)$.
 d) Assume that $E(X) = 5/9$ and $E(Y) = 5/6$, find the covariance between X and Y.
 e) Find $E(X^2 + Y^2)$.
4. Suppose that \(X \) and \(Y \) are independent continuous random variables with the following density functions: \(f_X(x) = 1, \) for \(0 < x < 1 \) and \(f_Y(y) = 2y, \) for \(0 < y < 1. \) Find \(P(Y < X). \)

5. Employees of a large company all choose one of three levels of health insurance coverage, for which premiums, denoted by \(X, \) are 1, 2, and 3, respectively. Premiums are subject to a discount, denoted by \(Y, \) of 0 for smokers and 1 for non-smokers. The joint distribution of \(X \) and \(Y \) is given by:
\[
P(X = x, Y = y) = \frac{x^2 + y^2}{31}, \text{ for } x = 1, 2, 3 \text{ and } y = 0, 1.
\]

a) What is the probability distribution of \(X - Y, \) the total premium paid by a randomly chosen employee?

b) Calculate \(\text{Var}(Y|X = 1). \)

6. Three individuals are running a one kilometer race. The completion time for each individual is a random variable. Let \(X_i \) be the completion time, in minutes, for person \(i. \)

\[\begin{align*}
X_1 &: \text{uniform distribution on the interval } [2.5, 3.1] \\
X_2 &: \text{uniform distribution on the interval } [2.6, 3.2] \\
X_3 &: \text{uniform distribution on the interval } [2.7, 3.3]
\end{align*}\]

a) Find the probability that the earliest completion is less than 3 minutes.

b) Find the probability that the latest completion is less than 3 minutes.

7. Suppose that \(X \) and \(Y \) are independent exponential random variables, each with mean 1. Suppose that \(U = Y/X. \) Find the probability density function of \(U. \)

8. If the distribution of the weights of all men traveling by air between Dallas and El Paso has a mean of 153 pounds and a standard deviation of 18 pounds, what is the probability that the total weight of 36 men traveling on a plane between these two cities is more than 5,400 pounds?

9. Let \(X, Y, \) and \(Z \) be independent Poisson random variables with \(E(X) = 3, \) \(E(Y) = 1 \) and \(E(Z) = 1. \) Find \(P(X + Y + Z < 2). \)
Part B [Answer all questions]

Question #10
(a) Let X be a random variable such that $P(X \leq 0) = 0$, $k \geq 1$ and let $\mu = \text{E}(X)$ exist. Prove that $P(X \geq \mu k) \leq k^{-1}$.

(b) Define each of the following concepts in respect of a sequence $\{X_n\}$, $(n \geq 1)$ of random variables:
(i) Convergence in probability.
(ii) Convergence in distribution.
(c) Let Y_n denote the maximum of a random sample of size n from a distribution that has the probability density function $f(x) = \theta^{-1}$, $0 < x < \theta$, zero elsewhere. Let $U_n = nY_n$. Does U_n converge in distribution to some random variable U? If so, find the probability density function of U.
(d) For the following sequences of independent random variables, does the weak law of large numbers hold?
 (i) $P(X_n = \pm n) = 1/(2\sqrt{n})$, $P(X_n = 0) = 1-1/\sqrt{n}$
 (ii) $P(X_n = \pm 2^n) = 2^{-3n-1}$, $P(X_n = \pm 1) = (1-2^{-3n})/2$
 (iii) $P(X_n = \pm \sqrt{n}) = 2^{-1}$

Question #11
(a) Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution that has a mean μ and a variance σ^2. Let \bar{X}_n denote the sample mean. Prove that the random variable $Y_n = \sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting distribution that is normal with mean zero and variance 1.

(b) Let \bar{X}_n denote the mean of a random sample of size n from a distribution that has the probability density function $f(x) = e^x$ for $x < 0$.
 (i) Show that the moment generating function of X is $M(t) = (1+t)^{-1}$.
 (ii) Find the moment generating function $M(t, n)$ of $Y_n = \sqrt{n}(\bar{X}_n + 1)$.
 (iii) By taking the limit of the moment generating function $M(t, n)$ in (ii), show that the limiting distribution of Y_n as $n \to \infty$ is a standard normal distribution.

Question #12
(a) State the Neyman-Pearson theorem.

(b) Suppose a random variable X has the gamma probability density function $f(x; \theta) = \theta^{-2}xe^{-x/\theta}$ for $x > 0$. Consider the simple null hypothesis $H_0 : \theta = \theta_0$ against the alternative hypothesis $H_1 : \theta < \theta_0$. Let X_1, X_2, \ldots, X_5 denote a random sample of size 5 from the distribution.
 (i) Use the Neyman-Pearson theorem to find the most powerful critical region of size α.
 (ii) Find the constant in (i) by taking $\theta_0 = 2$ and $\alpha = 0.05$.

Question #13
(a) Explain each of the following and give an example to illustrate your explanation.
 (i) Sufficient statistic
 (ii) Ancillary statistic
 (iii) Exponential family of probability density functions
(b) Suppose a random sample of size \(n \) is taken from generalized negative binomial distribution (GNBD) with the probability mass function

\[
f(x; \theta) = \frac{m}{m+2x} \left(\frac{m+2x}{x} \right) \theta^x (1-\theta)^{m+x}, \quad \text{for } x = 0, 1, 2, 3, \ldots,
\]

where \(0 < \theta < 0.5 \) and \(m > 0 \). The population mean for the distribution is \(\mu = m\theta (1-2\theta)^{-1} \) and the population variance is \(\sigma^2 = m\theta (1-\theta)(1-2\theta)^{-3} \).

 (i) If the parameter \(m \) is known, obtain a sufficient statistic for parameter \(\theta \).
 (ii) If the parameter \(m \) is known, find the maximum likelihood estimator of \(\theta \).
 (iii) If the parameter \(m \) is known, find the moment estimator of \(\theta \).
 (iv) Determine the range of values of \(\theta \) for which the variance \(\sigma^2 \) is greater than the mean \(\mu \). Based on your answer, is \(\sigma^2 \) always greater than \(\mu \) for GNBD? Explain.

Question #14
(a) Let \(X_1, X_2, \ldots, X_n \) be a random sample from a Poisson distribution \(f(x; \theta) = \frac{e^{-\theta} \theta^x}{x!} \), for \(x = 0, 1, 2, \ldots \).

 (i) Show that the likelihood ratio test of \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta \neq \theta_0 \) is based upon the statistic \(Y = \sum_{i=1}^{n} X_i \). Show that the rejection region is of the form \(Y \leq c_1 \) or \(Y \geq c_2 \).
 (ii) Obtain the null distribution of \(Y = \sum_{i=1}^{n} X_i \).
 (iii) For \(\theta_0 = 0.5 \) and \(n = 50 \), find the approximate significance level of the test that rejects \(H_0 \) if \(Y \leq 15 \) or \(Y \geq 35 \). Use the Central Limit Theorem and ignore continuity correction.
 (iv) Use the rejection region in (iii) to find the power of the test when \(\theta = 0.32 \) and \(n = 50 \).

(b) Let \(Y_1 < Y_2 < \ldots < Y_5 \) be the order statistics of a random sample of size \(n = 5 \) from a distribution with probability density function \(f(x; \theta) = 1/\theta, \quad 0 < x < \theta \), zero elsewhere, where \(\theta > 0 \). The hypothesis \(H_0 : \theta = 1 \) is rejected and \(H_1 : \theta > 1 \) is accepted if the observed \(Y_3 \geq c \).

 (i) Find the constant \(c \) so that the significance level \(\alpha = 0.05 \)
 (ii) Determine the power function of the test.
 (iii) Can you compute the power at \(\theta = 0.5 \)? Why or why not?