Topical Review

Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review

Syed Nabeel Ahmed1 and Waseem Haider1,2

1School of Engineering & Technology, Central Michigan University, Mt. Pleasant, MI 48859, United States of America
2Science of Advanced Materials, Central Michigan University, Mt. Pleasant, MI 48859, United States of America

E-mail: haide1w@cmich.edu

Received 7 March 2018, revised 3 May 2018
Accepted for publication 22 May 2018
Published 13 June 2018

Abstract

There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.

Keywords: photocatalysis, heterojunction, nanomaterials, TiO$_2$, water treatment

(Some figures may appear in colour only in the online journal)

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOPs</td>
<td>Advanced oxidation processes</td>
</tr>
<tr>
<td>BPA</td>
<td>Bisphenol A</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CDs</td>
<td>Carbon dots</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>E_{bg}</td>
<td>Band gap</td>
</tr>
<tr>
<td>g-C$_3$N$_4$</td>
<td>Graphitic carbon nitride</td>
</tr>
<tr>
<td>GO</td>
<td>Graphene oxide</td>
</tr>
<tr>
<td>IM</td>
<td>Immobilized</td>
</tr>
<tr>
<td>LCA</td>
<td>Life cycle assessment</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene blue</td>
</tr>
</tbody>
</table>

© 2018 IOP Publishing Ltd Printed in the UK
MC Methylthionine chloride
MF Microfiltration
MNPs Magnetite nanoparticles
MO Methyl orange
NF Nanofiltration
NPs Nanoparticles
PCOU P-coumaric acid
PHA Phthalic anhydride
PMR Photocatalytic membrane reactors
rGO Reduced graphene oxide
TEM Transmission electron microscopy
TNH TiO$_2$ nanoholes structure
VB Valence band
ZPC Zero point charge

1. Introduction

Clean and drinkable water, free of toxic materials, carcinogenic substances and harmful bacteria, is necessary for human health. According to the United Nations’ World Water Development Report 2018, the demand for clean water is expected to increase by nearly one-third by 2050 [1]. Clean water is a primary requirement in a variety of crucial industries including electronics, food and pharmaceuticals. Therefore, in order to meet the water supply demands, more and more efforts are being made to develop new methods for the reclamation of wastewater, both from industries and households. Innovations in nanotechnology and nanotechnology promise great improvements in water quality with the help of nanosorbents, bioactive nanoparticles [2], nanocatalysts and nanoparticle enhanced filtration [3]. At the nanoscale (1–100 nm), materials demonstrate significantly different physical and chemical properties from their bulk counterparts. Furthermore, a higher surface to volume ratio provides a dramatic increase in the surface reactivity. As a result, nanotechnology-based products that decrease the amount of toxic substances to sub-ppb levels can help to achieve water quality standards and reduce the health concerns.

In the past decade, visible-light photocatalytic activities of many nanomaterials such as nanoparticles and quantum dots of CdS [4, 5], BiVO$_4$ [6], nanoparticles and nanorods of ZnO [7, 8], and nanocubes of AgCl [9, 10] have been reported. The most widely studied of these nanomaterials, TiO$_2$, has been around for more than three decades now and shows excellent photocatalytic activity, anti-reflection, as well as self-cleaning ability [11]. In addition to this, TiO$_2$ also possesses hydrophilicity [11], long term stability [11] and high photo-reactivity, along with lower toxicity and costs than other semiconductors [11]. Furthermore, in order to provide magnetic separation to TiO$_2$, embedding an Fe$_3$O$_4$ core has been proven very useful [12]. Fe$_3$O$_4$, being a photocatalyst itself, possesses superparamagnetic behavior at particle sizes below 20 nm, due to the finite size effect [13, 14]. This property, along with its photocatalytic ability, has been reported to be promising for water and wastewater treatment technology by many researchers [15–18]. Similarly, ZnO, a wide band-gap semiconductor, and g-C$_3$N$_4$, a metal-free photocatalyst have recently emerged as promising materials for photocatalytic applications [19–22].

Another very important member of the photocatalytic family is graphene, which is formed by a two-dimensional array of hexagonal sp2 hybridized carbon atoms. Since its discovery in 2004 [23], graphene and its derivatives have gained significant attention in many applications, with photocatalytic nanocomposites being one of them. Graphene has a unique two-dimensional structure, with high surface area, high conductivity and electron mobility. Consequently, graphene can potentially promote electron–hole recombination more effectively and thus improve the photocatalytic efficiency [24].

These semiconductors have the potential to degrade the contaminants and microorganisms from the water and waste water, through a process called heterogeneous photocatalysis. Heterogeneous photocatalysis utilizes photon energy and converts it into chemical energy, and offers great potential for many applications specially water and waste water treatment. This process is really effective in degrading a wide range of organic contaminants, eventually mineralizing them into carbon dioxide and water [25]. Therefore, unlike other water treatment techniques such as coagulation and flocculation, heterogeneous photocatalysis completely eliminates the contaminants, rather than transforming them from one phase to another.

2. Heterogeneous photocatalysis

A fast-growing population and ever-improving industrialization has rendered the problem of wastewater very vital in the recent years, and consequently lead to researchers studying the advanced oxidation processes (AOPs), and looking for solutions. Among the AOPs, semiconductor photocatalysis has emerged as a promising technique which has the potential for total mineralization of the organic pollutants [26–29] as well as toxic metal ions [30, 31]. Since the discovery of the photocatalytic properties of TiO$_2$ in 1972 [32], there has been lots of research devoted to the understanding of fundamental mechanisms and parameters in order to utilize this process for water and wastewater treatment applications.

The mechanism of heterogeneous photocatalysis is primarily described by the semiconductors’ capability to generate charge carriers under light irradiation followed by the generation of free radicals such as OH- which leads to further reactions, eventually forming CO$_2$ and H$_2$O [33]. Therefore, the most attractive features of heterogeneous photocatalysis include [34]:

• The pollutants degrade into CO$_2$ and other inorganic substances completely.
• The process takes place at ambient conditions.
2.1. Mechanism of heterogeneous photocatalysis

The mechanism of heterogeneous photocatalysis involves a chain of oxidative and reductive reactions on the surface of the photocatalyst. In a semiconductor, the lowest occupied and the highest unoccupied energy bands are divided by a bandgap, denoted by E_{bg}. When light energy (photons) carrying a photon energy greater than or equal to E_{bg} of the semiconductor is illuminated on its surface, the electrons from the valence bands are photo-excited and promoted to conduction band (CB) in femtoseconds. This leaves behind an unfilled valence band, called a hole (h^+), thus creating an electron–hole pair. If these electrons and holes are somehow trapped on the semiconductor surface and their recombination is prevented, this initiates a series of reactions postulated as follows [42]:

\[
\text{Photoexcitation: } \text{TiO}_2 + h\nu \rightarrow e^- + h^+, \quad (1)
\]

\[
\text{Entrapment of free electrons: } e^-_{CB} \rightarrow e^-_{TR}, \quad (2)
\]

\[
\text{Entrapment of holes: } h^+_{VB} \rightarrow h^+_{TR}. \quad (3)
\]

\[
\text{Charge carrier recombination: } e^-_{TR} + h^+_{VB} \rightarrow e^-_{CB} + \text{heat}, \quad (4)
\]

\[
\text{Photoexcited electron scavenging: } (\text{O}_2)_{ads} + e^- \rightarrow \text{O}_2^-, \quad (5)
\]

\[
\text{Oxidation of hydroxyls: } \text{OH}^- + h^+ \rightarrow \text{OH} \cdot \cdot, \quad (6)
\]

\[
\text{Photodegradation by OH} \cdot \text{ radicals: } R - \text{H} + \text{OH} \cdot \rightarrow R' + \text{H}_2\text{O}. \quad (7)
\]

The OH · radicals generated in equation (6) reduces organic impurities into intermediate compounds, which are further degraded by the same reaction until CO$_2$ and water are released as by-products (equation (7)). The overall reaction can be summarized into the following steps [42]:

i. Mass transfer of the organic pollutants or bacteria from the bulk liquid phase to the photocatalyst surface.

ii. Adsorption of the pollutant into the photon activated photocatalyst surface.

iii. The generation of OH · radicals and H$_2$O$_2$ followed by the chemical degradation of the contaminants.

iv. Desorption of the intermediate or final products from the surface of the photocatalyst.

v. Mass transfer of the intermediate or final product into the bulk liquid phase [42].

2.2. Applications

2.2.1. Water and waste water treatment. One of the main applications of semiconductor photocatalysis comes in water and waste water purification. In photocatalysis, the main role of these semiconductors is to transfer the energy from the light to the charge carrier [43]. TiO$_2$ and ZnO are wide bandgap semiconductors with strong adsorption in the UV, making them ideal for efficiently photodegrade many organic impurities and toxic metal ions as discussed previously. Recently, this process has also been found useful on actual water samples from Agbo river [29]. Moreover, these semiconductors can also be used for the treatment of seawater in case of oil spills, particularly for the removal of water-soluble fractions of crude oil [44–47].

2.2.2. Air treatment. Air pollutants, specially sulfur dioxide and nitrates, have the potential to generate persistent negative impacts on the human health. Just like water purification, TiO$_2$ is the most widely studied photocatalyst for air purification as well. TiO$_2$, in the form of coatings and nanotubes, have been successfully tested on the removal of acetone [48], ethanol [48], toluene [40, 48], and volatile organic compound [49]. In the past few years, graphic
carbon nitride (g-C3N4) has also demonstrated great potential for air purification even with visible light irradiation [41, 50].

2.2.3. Reduction of GO. The reduction of GO to rGO has been done in many different ways in the past decade to increase its electronic conductivity. Recently, photocatalytically-induced reduction mechanisms have been demonstrated as effective methods for the reduction of GO. Such methods have also been used for the preparation of rGO–TiO2 [51] and rGO–ZnO nanocomposites [52]. This has been achieved by hybridizing graphene oxide with both TiO2 as well as ZnO [52, 53]. The photocatalytic technique provides an on-demand UV-assisted reduction technique for graphene oxide by producing photogenerated electrons on the semiconductor under UV-light irradiation. These photogenerated electrons are subsequently transferred to the GO nanosheets, resulting in the formation of rGO [54].

2.2.4. Selective oxidation and reduction of organics. Although photocatalysis has been considered an unselective process for a long period of time specially in water, the field of selective photocatalysis has developed rapidly in recent years. This newly developed field has now extended to several applications such as the production of aromatic aldehydes [55], oxidation of alcohols [56, 57] and the photocatalytic reduction of CO2 for energy applications [58–60]. Selective oxidation and reduction can be achieved by modifications of the photocatalyst or by the alterations in the external conditions [61].

2.2.5. Targeted drug delivery. Surface engineered iron oxide nanoparticles can effectively be employed in drug delivery applications. As magnetic vectors can be directed to the target of interest using magnetic field, these magnetic nanoparticles have been designed to deliver DNA molecules, peptides, and radioactive chemotherapeutic, and hyperthermic drugs for localized damage of tumor tissue [62]. The attachment of radiotracers to Iron oxide nanoparticles can also aid in radiolabeled magnetic drug delivery systems, allowing a higher local dose to enhance tumor cell eradication [62].

3. Application of heterogeneous photocatalysis for water and wastewater treatment

3.1. Photocatalytic materials

Some of the most widely used photocatalytic nanomaterials include Fe3O4, TiO2, ZnO, and graphitic carbon nitride (g-C3N4). The features and properties of these nanomaterials specially magnetite (Fe3O4) nanoparticles (MNPs), ZnO and TiO2 for heterogeneous photocatalysis have been briefly discussed in the previous literatures [30, 31, 63–65], and will be discussed in this paper too. These nanomaterials and their combinations carry an enormous potential for water and wastewater treatment and will be discussed later in this paper.

Besides the fore-mentioned nanomaterials, another very important member of the photocatalysis family is graphene oxide, which is also one of the most emerging advanced nanomaterial of the 21st century. Out of its countless number of applications, heterogeneous photocatalysis is one of the most phenomenal. The ballisitic behavior of graphene has been in discussion for the past 20 years [66]. Combination of this character with graphene oxide being hydrophilic in nature, provides higher efficiency of the water purification processes [30, 67].

In a broader way, photocatalytic nanomaterials can be categorized in terms of dimensionality as zero-dimensional (nanoparticles [68] and quantum dots [69]), one-dimensional (nanorods [70, 71], nanoribbons [72], and nanotubes [4, 72]), two-dimensional (graphene bases nanocomposites) [66, 73, 74], or three-dimensional (3D graphene) [21, 75, 76]. The choice of morphology depends upon the targeted application, as well as the desired properties. The most widely used group of nanomaterials is the zero-dimensional group, particularly in the form of core–shell nanoparticles.

3.1.1. Core–shell nanoparticles. Since the discovery of sandwich colloidal semiconductor particles in the 1980s [77], the creation of multilayered nanoparticles has become a significant research area in advanced materials chemistry today [78]. In the 1990s, the researchers developed concentric multilayer semiconductor nanoparticles and the term ‘core–shell’ was adopted. The core–shell particles, as the name implies consist of an inner material (core) and an outer material (shell). Figure 2 shows different forms of core–shell particles used in many technological areas such as quantum dots, microelectronics, optic, magnetic, and photocative devices [77, 78]. However, the primary focus of this article constitutes of the photocatalytic applications.

Among all these core–shell structures, Fe3O4 based core–shell structures have been exclusively studied, due to the fact that an Fe3O4 core aids with the magnetic separation of the nanocomposite from the aqueous medium. Singh et al and Wu prepared Fe3O4 embedded ZnO nanocomposite and compared its magnetic properties with pure Fe3O4. The curves (a) and (b) in figure 3(b) show the M versus H loop of pure Fe3O4 and Fe3O4 @ ZnO respectively [79]. It has been observed that Fe3O4 nanoparticles embedded in ZnO provide much higher photocatalytic efficiency as compared to their individual counterparts, as compared in figure 3(a) [31]. Moreover, the resulting nanocomposite demonstrates almost the same photocatalytic efficiency in the second and third cycle of use. Thus core–shell structure provides an effective way to combine the beneficial properties of two or more nanomaterials into one nanocomposite.

3.1.2. Nanocomposites and heterojunctions. Heterojunction is defined as the interface between two different semiconductors with unequal band structure. Typically, there are three types of conventional semiconductor heterojunctions; namely (i) straddling type (ii) staggered type, and (iii) those with a broken gap. In type-I (straddling type heterojunctions), the energy band gap of semiconductor A is wider than B, (as
shown in figure 4), resulting in the accumulation of the charge carriers on the semiconductor with smaller band gap. Since both electron and hole are accumulated on the same semiconductor, the recombination of charge carriers is still possible. In type-II (staggered type) heterojunction, the valence and CBs of semiconductor A are higher and lower than those of B. This results in the spatial separation of charge carriers which prevents the recombination of electrons and holes. The type-III heterojunction (with broken gap) is the same as the staggered type except that the staggered gap becomes so wide that electron–hole migration is not possible, therefore, the separation cannot occur [35, 77].

Besides conventional heterojunction, many other forms of heterojunctions have also been studied. These include p–n heterojunction, surface heterojunction, direct Z-scheme heterojunction and semiconductor/graphene heterojunction. A p–n junction improves the photocatalytic performance by providing an additional electric field. This is achieved by combining n-type and p-type semiconductors. On the other hand, a surface heterojunction involves creating different
crystal facets on the exposed surface of a semiconductor [35, 80, 81]. Although these heterojunctions tend to enhance the electron–hole separation, they also reduce the redox ability of the photocatalyst. In order to overcome this problem, Z-scheme heterojunction has been employed to maximize the redox potential of the heterojunction systems. Z-scheme photocatalytic system consists of two different semiconductors, and an acceptor/donor pair. The two semiconductors are not in a physical contact, instead the migration of the photogenerated holes takes place through the acceptor/donor pair [35, 77, 82, 83].

Recently, a new form of heterojunction, called semiconductor/graphene heterojunction has gained huge interest [35, 73, 77, 84–89]. Due to the ultrahigh electron conductivity of graphene, the electron flow is enhanced, consequently improving the photocatalytic efficiency. Moreover, a large π–π conjugation on the graphene surface can be useful in the adsorption of different reactants during the photocatalytic reaction. However, it has been observed that if the graphene content is higher than 1% by weight, the photocatalytic activity of the semiconductor is drastically affected, due to the light shielding effect which suppresses the semiconductor irradiation [35]. In the past few years, many semiconductor graphene heterojunctions such as TiO2–graphene, ZnO–graphene, CdS–graphene and C3N4–graphene have been studied [5, 83, 90, 91].

Figure 5 illustrates a typical TEM micrograph of a TiO2–graphene nanocomposite, as prepared by Zhang et al by using facile one step hydrothermal method [92]. Zhang and coworkers reported efficient charge separation properties, excellent absorptivity of dyes, and extended light absorption range simultaneously. Similarly, figure 5(b) shows the TEM image of a ternary nanocomposite of RGO/BiVO4/TiO2 [90]. These nanocomposites have been prepared by hydrothermal methods and can be used in many environmental applications including, but not limited to, water and wastewater treatment [93].

3.2. Potential nanomaterials for water and wastewater purification

3.2.1. Ferritic nanomaterials. Ferritic nanomaterials include magnetite (Fe3O4) NPs, maghemite (γ-Fe2O3) NPs and nanorods, and hexagonal ferrites. One of the key features of Fe3O4 catalyst is its easy recovery by magnetic force and its reusability due to its long term stability [26]. Magnetic nanoparticles display the finite size effect of high surface to volume ratio, resulting in an excellent adsorption capacity for the removal of toxic metal ions [63, 94].

Fe3O4, being the most widely studied photocatalyst among the ferrite nanoparticles, displays exceptional super-paramagnetic behavior, which provides an additional benefit of a much easier magnetic separation of the semiconductor and the solution. The preparation of Fe3O4 nanoparticles is commonly done by coprecipitation method [13, 31, 63, 79] or thermal decomposition method [95–98], with slight variations such as the room temperature coprecipitation by Mascolo and sonochemical preparation by Solomon [13, 26, 99]. Moreover, different variations in the morphologies of ferritic nanoparticles are shown in figures 6(a) and (b), which show the SEM images of hollow Fe3O4 nanoparticles [100] and a complex core–shell nanocomposite of Fe3O4 @ SiO2 @ Poly (ethyleneimine)-Au/Ag @ Polydopamine [101]. These nanocomposites show highly stabilized reactivity and magnetic recyclability. Table 1 summarizes different studies of the photocatalytic activities of Fe3O4.

3.2.2. ZnO. Zinc oxide is a wide-bandgap semiconductor with a large exciton binding energy of 60 meV and a bandgap...
of 3.37 eV. These two properties make it suitable for a variety of environmental, optical and electronic applications [68, 107]. Semiconductor ZnO nanoparticles display excellent photocatalytic efficiency against the organic contaminants due to their non-toxic nature, wide band gap, and good quantum efficiency [31]. Furthermore, the past decade has witnessed a rising interest in the photocatalytic applications of ZnO due to the fact that researchers have reported ZnO showing more impressive photocatalytic properties than widely studied TiO$_2$ [68]. The electron mobility of ZnO ($\sim 100 \text{cm}^2 \text{V}^{-1} \text{s}$) is approximately two orders of magnitude higher than TiO$_2$ based nanomaterials. Thus, it is easier for the photo-generated charge carriers to migrate towards the surface of ZnO-based nanomaterials [108]. The excellent photocatalytic efficiency of ZnO also comes from the creation of defect sites which prevents the electron–hole recombination by photon absorption. ZnO can be synthesized in many different morphologies, as reported by Xu et al some of which are shown in figure 7. These include cauliflower-like, truncated hexagonal, nanotubes, and hourglass-like morphologies [109]. Additionally, ordered ZnO nanowall arrays and single-crystal ZnO are much easier to be synthesized with high aspect ratios, because of its tendency for natural anisotropic growth [20, 108, 110]. ZnO has also been proven to be useful in the removal of toxic metal ions as well as harmful microorganisms such as Escheria coli (E.coli) and Staphylococcus aureus (S. aureus) [31]. Table 2 summarizes the recent advances in ZnO-based nanocomposites and their photocatalytic performances.

3.2.3. TiO$_2$. TiO$_2$ in anatase crystalline form is the most widely studied photocatalyst because of its high quantum yield which is mainly responsible for its photocatalytic efficiency [27, 116]. The bandgap energy of 3.2 eV for TiO$_2$ requires photoexcitation wavelengths less than 385 nm, corresponding to a near-UV light irradiation. TiO$_2$ is considered the most efficient photocatalyst in the removal of bacteria and organic contaminants [117–121]. The behavior of TiO$_2$ in attracting all the micro level impurities such as metal ions (e.g. Pb$^{2+}$ and Cr$^{6+}$) and dissolved minerals has also been extensively studied [7, 31, 33, 105, 111, 122], along with its self-sterilizing property. The results have shown that when doped with nitrogen ions or metal oxides, the photocatalytic behavior of TiO$_2$ can be achieved in visible light too [43]. Additionally, TiO$_2$ particles, being extremely versatile, can act as both oxidative and reductive catalysts for the removal of organic and inorganic impurities [123]. Due to its self-sterilizing property, it can be used in many biomedical applications such as on-demand bactericidal properties in dental adhesives [124], catheters and other medical tubes [39].

3.2.3.1. Visible light responsive TiO$_2$. Several studies have shown that, with various kinds of doping and heterojunctions, the TiO$_2$ photocatalysis can be achieved in the visible light as well [82, 119, 125]. One of the methods to achieve this is by coupling TiO$_2$ with a narrow bandgap semiconductor. Zhu and Guo used the same approach by coupling TiO$_2$ with CdS, which has a bandgap of 2.4 eV [4, 126]. When TiO$_2$ is coupled with CdS, it has been reported that the formation of heterojunction at the contact interface can hinder the charge carrier recombination controlling the charge separation. Additionally, due to the synergistic effect, both TiO$_2$ and CdS are irradiated and activated simultaneously under incident light [4]. Recently, Zada fabricated a novel Ag–TiO$_2$ photocatalyst by using cicada wings as a template. This nano-holes/nano-nipples structure has demonstrated remarkable photocatalytic activity in UV–visible light by completely degrading MB dye in 15 min. This excellent photocatalytic activity is attributed to the high surface area, enhanced electron–hole separation, and localized surface plasmon resonance property of Ag NPs. Figures 8(a) and (b) illustrate the TEM images of this nano-holes/nano-nipple structure [127].

Apart from heterojunction, TiO$_2$ photocatalysis can also be achieved in visible light by doping in with nitrogen or sulfur [128–131], or co-doping with both [132]. Copper
Table 1. Photocatalytic performance of Fe$_3$O$_4$ with various heterojunctions.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>Dimensionality</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$O$_4$</td>
<td>UV</td>
<td>Methyl red</td>
<td>CL = 0.075 g l$^{-1}$ $t_r = 60$ min 0D</td>
<td>50.5%</td>
<td>[26]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$@ZnO</td>
<td>250 W UV</td>
<td>Rhodamine B (7 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$ $t_r = 60$ min 0D</td>
<td>99.3%</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$–ZnO–CoWO$_4$</td>
<td>50 W visible</td>
<td>Rhodamine B (4.8 mg l$^{-1}$)</td>
<td>CL = 0.4 mg l$^{-1}$ $t_r = 405$ min 0D</td>
<td>98.3%</td>
<td>[103]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$@TiO$_2$</td>
<td>250 W UV</td>
<td>Rhodamine B (10 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$ $t_r = 60$ min 0D</td>
<td>92%</td>
<td>[17]</td>
<td></td>
</tr>
<tr>
<td>Bi$_2$O$_3$–Fe$_3$O$_4$</td>
<td>15 × 6 W visible</td>
<td>Ibuprofen (2.1 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$ $t_r = 120$ min 1D</td>
<td>100%</td>
<td>[104]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$–CuO–ZnO–Nano graphene</td>
<td>40 W UV</td>
<td>Methylene blue (30 mg l$^{-1}$)</td>
<td>CL = 0.3 g l$^{-1}$ $t_r = 120$ min 2D</td>
<td>93%</td>
<td>[64]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$@Bi$_2$O$_3$–30%rGO</td>
<td>Visible</td>
<td>Ciprofloxacin</td>
<td>CL = N/A $t_r = 240$ min 2D</td>
<td>98.3%</td>
<td>[105]</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$–ZnO–rGO</td>
<td>Visible</td>
<td>Methylene violet (408 mg l$^{-1}$)</td>
<td>CL = 40 mg l$^{-1}$ $t_r = 120$ min 2D</td>
<td>83.5%</td>
<td>[106]</td>
<td></td>
</tr>
</tbody>
</table>

Note. PE = photodegradation efficiency.
CL = catalyst loading.
t_r = irradiation time.
doped TiO$_2$ films have also been found to accelerate the TiO$_2$ disinfection in the presence of natural sunlight [131]. Table 3 summarizes various nanocomposites of TiO$_2$ and their photocatalytic performance in UV and visible regions.

3.2.4. Carbon-based nanomaterials

Carbon-based nanomaterials include graphene, graphene oxide, reduced graphene oxide, fullerene, single and multi-walled carbon nanotubes [74]. Graphene, since its discovery in 2004 [23], has particularly received the most attention among the carbon-based nanomaterials. Graphene is essentially a two-dimensional structure formed by the hexagonal rings of sp2 hybridized carbon atoms, and is considered the precursor for graphene family nanomaterials. It has a large theoretical specific surface area (2630 m2 g$^{-1}$), high thermal conductivity (\sim5000 W mK$^{-1}$) high Young’s modulus (\sim1.0 TPa) and good electrical conductivity [136]. Its excellent electron conductivity permits the flow of electrons from the semiconductor to its surface, preventing the electron–hole recombination. Additionally, the potential of graphene/graphene$–$ (\sim0.08 V versus standard hydrogen electrode, pH = 0) is usually lower than the conduction-band potential of the semiconductor, thereby enabling the rapid electron migration from the semiconductor to the graphene. Furthermore, the large specific surface area of graphene helps to provide more active sites for the photocatalytic reactions to take place [35].

It has been proved by many studies that graphene-TiO$_2$ heterojunction provides much higher photocatalytic efficiency than pure TiO$_2$ [85, 86, 137–139]. Table 4 shows the effect of graphene hybridization on the photocatalytic performance of TiO$_2$ for the degradation of different contaminants.

The recently developed three-dimensional graphene (3DG) has also attracted increasing attention owing to its unique features. 3DG, with foam-like macrostructures, possesses many desirable properties, which include increased surface area, controlled shape and size, and ease of handling and reuse. These features make it a promising candidate for photocatalytic applications [21, 86]. Another pioneer in this category are carbon dots which have also emerged as a promising metal-free photocatalyst for photocatalytic applications, due to their excellent electron transfer rates, tunable optical absorption and emission, and good adsorption of organic molecules [69, 145]. The nanocomposites of ZnO with 3D graphene oxide have particularly gained more

Figure 7. FESEM images of various ZnO morphologies showing (a) cauliflower-like, (b) truncated hexagonal, (c) nanotubes and (d) hourglass-like morphologies (Reprinted (adapted) with permission from Xu et al [109]. Copyright 2009 American Chemical Society.)
Table 2. Photocatalytic performance of ZnO-based nanocomposites.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>Dimensionality</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1%)–ZnO</td>
<td>UV (355 nm)</td>
<td>S. aureus (4 × 107 CFU ml⁻¹)</td>
<td>CL = 1 g l⁻¹, tₑ = 10 min</td>
<td>0D</td>
<td>~100%</td>
<td>[111]</td>
</tr>
<tr>
<td>ZnO–CeO₂</td>
<td>250 W visible</td>
<td>Methylene blue</td>
<td>CL = 1 g l⁻¹, tₑ = 2.5 h</td>
<td>1D</td>
<td>97.4%</td>
<td>[8]</td>
</tr>
<tr>
<td>Ag–ZnO</td>
<td>1500 W UV</td>
<td>Phenol (20 mg l⁻¹)</td>
<td>CL = 1 g l⁻¹, tₑ = 60 min</td>
<td>1D</td>
<td>58%</td>
<td>[22]</td>
</tr>
<tr>
<td>ZnO@Ag@Cu₂O</td>
<td>12 W UV</td>
<td>Methyl orange (20 mg l⁻¹)</td>
<td>CL = IM, tₑ = 240 min</td>
<td>1D</td>
<td>~64%</td>
<td>[112]</td>
</tr>
<tr>
<td>ZnO-graphene</td>
<td>UV (365 nm)</td>
<td>Deoxynivalenol (15 mg l⁻¹)</td>
<td>CL = 0.5 mg l⁻¹, tₑ = 30 min</td>
<td>2D</td>
<td>~99%</td>
<td>[84]</td>
</tr>
<tr>
<td>Ag-ZMNWAg</td>
<td>50 W visible</td>
<td>MC (0.5 mg l⁻¹)</td>
<td>CL = IM, tₑ = 90 min</td>
<td>2D</td>
<td>93.4%</td>
<td>[20]</td>
</tr>
<tr>
<td>CdS–ZnO-graphene</td>
<td>300 W visible</td>
<td>4-nitroaniline (10 mg l⁻¹)</td>
<td>CL = 0.25 g l⁻¹, tₑ = 16 min</td>
<td>2D</td>
<td>98%</td>
<td>[113]</td>
</tr>
<tr>
<td>ZnO–GO</td>
<td>250 W UV</td>
<td>Methylene blue (960 mg l⁻¹)</td>
<td>CL = 0.25 g l⁻¹, tₑ = 450 min</td>
<td>2D</td>
<td>~75%</td>
<td>[114]</td>
</tr>
<tr>
<td>Au–ZnO–rGO</td>
<td>UV and visible</td>
<td>Rhodamine B</td>
<td>CL = IM, tₑ = 180 min</td>
<td>3D</td>
<td>94%</td>
<td>[21]</td>
</tr>
<tr>
<td>Au–GO–ZnO</td>
<td>20 W UV</td>
<td>Methylene blue (3.2 mg l⁻¹)</td>
<td>CL = IM, tₑ = 240 min</td>
<td>3D</td>
<td>81%</td>
<td>[115]</td>
</tr>
<tr>
<td>ZnO–rGO</td>
<td>20 W UV</td>
<td>Methylene blue (25 mg l⁻¹)</td>
<td>CL = 0.1 g l⁻¹, tₑ = 60 min</td>
<td>3D</td>
<td>~86%</td>
<td>[76]</td>
</tr>
</tbody>
</table>

Note. PE = photodegradation efficiency.
MC = methylthionine chloride.
IM = immobilized.
tₑ = irradiation time.
CL = catalyst loading.
* Ag–ZnO mesoporous nanowall arrays.
that the bulk composites are categorized as three-dimensional.

3.2.5. Metal-free photocatalysts. Recently, a new class of photocatalysts known as metal-free photocatalysts have gained remarkable attention. These photocatalysts include selenium [149], red phosphorous [150, 151], carbon sulfide [152], boron carbides [153], graphitic carbon nitride [50, 154, 155], graphene quantum dots [69], and crystalline silicon [156]. Among these, graphitic carbon nitride (g-C\(_3\)N\(_4\)) and its nanocomposite have been believed to be the most promising ones for environmental applications like water and air purification [50, 157]. Figures 8(a) and (b) shows SEM images of g-C\(_3\)N\(_4\) samples, as prepared by Xu [155]. g-C\(_3\)N\(_4\) is constructed from s-triazine and tri-s-triazine planes that stack together in a structurally analogous way to graphene sheets in graphite [158]. It has high thermal stability (up to 600 °C in air) and resistance to chemical attacks, due to the highly condensed tri-s-triazine ring structure [158]. In addition to being non-toxic and easily processable, graphitic carbon nitride is a medium band-gap semiconductor (2.7 eV) and is excitable with visible light with wavelengths up to 470 nm. However, carrier mobility in g-C\(_3\)N\(_4\) is restricted due to the absence of interlayer hybridization of the electronic states. Therefore, the photocatalytic activity of pure g-C\(_3\)N\(_4\) is not sufficient for potential applications, which has led to significant efforts to improve its properties by doping and heterojunctions [157]. Table 5 summarizes these efforts by systematically comparing the photocatalytic efficiencies of different g-C\(_3\)N\(_4\)-based composites and nanocomposites. Note that the bulk composites are categorized as three-dimensional.

Recently, a novel g-C\(_3\)N\(_4\) based nanocomposite has been developed by Zhang by combining g-C\(_3\)N\(_4\) with carbon nanotubes and graphene [159]. It has been reported that g-C\(_3\)N\(_4\) acts as an efficient photocatalyst whereas carbon nanotubes and graphene act as supercapacitors. This allows the nanocomposite to demonstrate post-illumination 'catalytic memory', which means that the photocatalyst can store a portion of its photocatalytic activity after illumination [159]. Another important metal-free photocatalyst is C\(_2\)N, which is another polymeric carbon nitride. It has been reported that layered C\(_2\)N possesses an optical band gap of as low as 1.96 eV [164]. In a recent study, the properties of single-layered (2D) C\(_2\)N and the effects of substitutional dopings have also been explored. The bandgap of monolayer C\(_2\)N has been reported to be 2.45 eV, which can be lowered to 2.01 with doping of boron [165].

3.2.6. Summary of recent progress on other nanomaterials. Other than the photocatalytic nanomaterials already discussed, many other nanomaterials have also been explored for water and wastewater treatment applications. They have been categorized here as oxide based and non-oxide type photocatalysts. Additionally, photocatalysts enhanced with polymers and hydrocarbons are particularly useful in the development of photocatalytic membranes. It should be noted that there is no sharp boundary between metal-free photocatalysts, carbon-based photocatalysts and hydrocarbon/polymer enhanced photocatalysts, and many photocatalytic materials can often be used interchangeably.

Other than the widely studied TiO\(_2\), Fe\(_3\)O\(_4\), and ZnO; tungsten trioxide (WO\(_3\)) and cuprous oxide (Cu\(_2\)O) are the most widely studied oxide type photocatalysts [166–171]. However, their photocatalytic performances are limited by their poor stability and rapid electron–hole recombination. Therefore, WO\(_3\) and Cu\(_2\)O, being n-type and p-type semiconductors respectively, have been studied with many heterojunctions, particularly with rGO [168, 170]. However, in spite of their visible light activity, there is comparatively a limited amount of literature that endorses their potential for water and wastewater treatment applications.

Among the polymers, chitosan and polyaniline are the most widely used because of the presence of reactive amino groups, which enable the adsorption of several metal ions [172–174]. Polyaniline is also one of the best conducting polymers [173], whereas chitosan is mostly used as a support for MNPs because of its low cost, wide availability, biodegradability, non-toxicity, biodegradability and unique structural possessions [172].
Table 3. Various nanocomposites of TiO$_2$ for UV and Visible light photoactivity.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>Dimensionality</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>15 W UV</td>
<td>NO$_3$</td>
<td>$t_r = 16$ h</td>
<td>0D</td>
<td>25.4%</td>
<td>[33]</td>
</tr>
<tr>
<td>TiO$_2$ P25</td>
<td>250 W UV</td>
<td>Rhodamine B (10 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$ $t_r = 60$ min</td>
<td>0D</td>
<td>55%</td>
<td>[17]</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>UV</td>
<td>Ammonia (700 mg l$^{-1}$)</td>
<td>CL = N/A $t_r = 120$ min</td>
<td>0D</td>
<td>72%</td>
<td>[133]</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>125 W UV</td>
<td>$E. coli$ (107 CFU/100 ml)</td>
<td>CL = 0.05-2 g l$^{-1}$ $t_r = 10$ min</td>
<td>0D</td>
<td>72.22%–99.76%</td>
<td>[134]</td>
</tr>
<tr>
<td>N–TiO$_2$</td>
<td>300 W visible</td>
<td>Methylene blue</td>
<td>CL = 1 g l$^{-1}$ $t_r = 240$ min</td>
<td>0D</td>
<td>~60%</td>
<td>[129]</td>
</tr>
<tr>
<td>Au doped TiO$_2$</td>
<td>24 W visible</td>
<td>Phenol (0.1 mM)</td>
<td>CL = 1 g l$^{-1}$ $t_r = 240$ min</td>
<td>0D</td>
<td>74%</td>
<td>[117]</td>
</tr>
<tr>
<td>Al doped TiO$_2$</td>
<td>UV</td>
<td>Acid orange 7 (5 mg l$^{-1}$)</td>
<td>CL = 0.5 g l$^{-1}$ $t_r = 60$ min</td>
<td>0D</td>
<td>99%</td>
<td>[135]</td>
</tr>
<tr>
<td>S doped TiO$_2$</td>
<td>300 W UV</td>
<td>Methylene blue (10 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$ $t_r = 12$ min</td>
<td>0D</td>
<td>95%</td>
<td>[24]</td>
</tr>
<tr>
<td>Ag doped TNH</td>
<td>UV–vis</td>
<td>Methylene Blue (30 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$ $t_r = 15$ min</td>
<td>2D</td>
<td>~100%</td>
<td>[127]</td>
</tr>
<tr>
<td>N–TiO$_2$</td>
<td>Visible</td>
<td>$E. coli$ (107 CFU ml$^{-1}$)</td>
<td>CL = 0.5 g l$^{-1}$ $t_r = 10$ min</td>
<td>3D</td>
<td>~100%</td>
<td>[130]</td>
</tr>
<tr>
<td>CdS-TNTAa</td>
<td>300 W visible</td>
<td>Rhodamine B (5 mg l$^{-1}$)</td>
<td>CL = N/A $t_r = 300$ min</td>
<td>3D</td>
<td>68.14%</td>
<td>[4]</td>
</tr>
<tr>
<td>TiO$_2$ NRs-CNTsb</td>
<td>Sunlight</td>
<td>Methylene blue (5 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$ $t_r = 180$ min</td>
<td>3D</td>
<td>97.5%</td>
<td>[72]</td>
</tr>
</tbody>
</table>

Note. PE = photodegradation efficiency.
CL = catalyst loading.
t_r = irradiation time.
TNH = TiO$_2$ nanostructures.
a TiO$_2$ nanotube arrays.
b TiO$_2$ nanoribbons and carbon nanotubes.
Furthermore, the CB edge position of CdS is relatively more dynamic requirements for photodetection of visible light. Additionally, the band position of CdS semiconductor perfectly satisfies the thermodynamic requirements for photocatalytic dye degradation. Its narrow bandgap of 2.4 eV at room temperature, allows for an efficient absorption of visible light. Additionally, the band position of CdS semiconductor perfectly satisfies the thermodynamic requirements for photocatalytic dye degradation. Its narrow bandgap of 2.4 eV at room temperature, allows for an efficient absorption of visible light.

Among the non-oxide type photocatalysts, zinc sulfide (ZnS) is a well-known photocatalyst, just like its oxide counterpart. Because of its wide-band gap energy (3.2–4.4 eV), a large exciton binding energy (40 meV), a small Bohr radius and high activity [175], it has gained intensive interests in phocatalysis [176, 177]. On the other hand, cadmium sulfide (CdS) is a narrow bandgap semiconductor, which makes it an attractive candidate for visible-light photocatalysis. Its narrow bandgap of 2.4 eV at room temperature, allows for an efficient absorption of visible light. Additionally, the band position of cadmium sulfide perfectly satisfies the thermodynamic requirements for photocatalytic dye degradation. Furthermore, the CB edge position of CdS is relatively more negative than that of the most studied semiconductors such as TiO$_2$ and ZnO, which indicates that the photogenerated electrons from CdS possess a stronger reducing power in the photocatalytic reactions [178].

Along with CdS and ZnS, table 6 systematically summarizes some recent nanocomposites other than previously discussed in this review. Many of these have shown an appreciable activity towards visible light, which makes them appreciable candidates for water and wastewater treatment applications, along with the previously discussed metal oxides and carbon-based photocatalytic materials. However, most of these materials currently do not have enough literature to support their potential for the aforementioned applications. Therefore, efforts are being made to explore possible heterojunctions and other variations to ensure their ability to photodegrade a broad spectrum of contaminants, in a wider variety of operating parameters.

3.3. Photocatalytic reactor design

A photocatalytic reactor for water or wastewater treatment can be as simple as the one shown in figure 10(a), which consists of TiO$_2$ coated glass beads and a UV lamp in the center [133]. However, in order to increase the irradiated surface area and to improve the efficiency, the photocatalytic reactors have been modified in many ways in the recent years.

Figure 9. SEM images of g-C$_3$N$_4$ samples (Reprinted from Xu et al. [155]. Licensed under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). © 2015 Xu Gong et al.).

Table 4. Effect of graphene hybridization on the photocatalytic performance of TiO$_2$.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$–GO</td>
<td>20 W UV</td>
<td>Methyl orange (10 mg l$^{-1}$)</td>
<td>CL = 0.5 g l$^{-1}$, $t_t = 9$ min</td>
<td>~90%</td>
<td>[140]</td>
</tr>
<tr>
<td>TiO$_2$–GO (10% GO)</td>
<td>Visible</td>
<td>Methyl orange (10 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$, $t_t = 3$ h</td>
<td>62%</td>
<td>[141]</td>
</tr>
<tr>
<td>TiO$_2$–GO (20% GO)</td>
<td>Visible</td>
<td>Methylen blue (10 mg l$^{-1}$)</td>
<td>CL = 0.8 g l$^{-1}$, $t_t = 100$ min</td>
<td>98.8%</td>
<td>[85]</td>
</tr>
<tr>
<td>S–TiO$_2$–rGO (GO)</td>
<td>300 W UV</td>
<td>Methylen blue (10 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$, $t_t = 12$ min</td>
<td>95%</td>
<td>[24]</td>
</tr>
<tr>
<td>TiO$_2$–rGO (GO)</td>
<td>15 W UV</td>
<td>NO$_x$</td>
<td>$t_t = 16$ h</td>
<td>42.86%</td>
<td>[33]</td>
</tr>
<tr>
<td>TiO$_2$–graphene</td>
<td>Visible</td>
<td>Methylen blue (10 mg l$^{-1}$)</td>
<td>CL = 0.01 g l$^{-1}$, $t_t = 150$ min</td>
<td>96%</td>
<td>[142]</td>
</tr>
<tr>
<td>MIP–TiO$_2$–graphenea</td>
<td>Visible</td>
<td>Bisphenol A (4 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$, $t_t = 180$ min</td>
<td>67.6%</td>
<td>[139]</td>
</tr>
<tr>
<td>Cu$_2$O–TiO$_2$–GO</td>
<td>300 W simulated sunlight</td>
<td>Congo red (10 mg l$^{-1}$)</td>
<td>CL = 0.25 g l$^{-1}$, $t_t = 90$ min</td>
<td>91%</td>
<td>[143]</td>
</tr>
<tr>
<td>TiO$_2$–Fe$_3$O$_4$–rGO</td>
<td>150 W Visible</td>
<td>TC-HCl (20 mg l$^{-1}$)</td>
<td>CL = 20 mg l$^{-1}$, $t_t = 330$ min</td>
<td>92.6%</td>
<td>[144]</td>
</tr>
</tbody>
</table>

Note. PE = photodegradation efficiency.

a Molecular imprinted TiO$_2$-graphene nanocomposite prepared with bisphenol A and o-phenylenediamine.
Table 5. Photocatalytic performance of g-C3N4-based composites.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>Dimensionality</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>g-C3N4-CNTs-graphene</td>
<td>Visible</td>
<td>Phenol (5 mg l⁻¹)</td>
<td>CL = 0.4 g l⁻¹, tᵣ = 60 min</td>
<td>2D</td>
<td>43%</td>
<td>[159]</td>
</tr>
<tr>
<td>mpg-C3N4</td>
<td>300 W visible</td>
<td>4-Chlorophenol (15.4 mg l⁻¹)</td>
<td>CL = 0.5 g l⁻¹, tᵣ = 60 min</td>
<td>3D</td>
<td>~100%</td>
<td>[158]</td>
</tr>
<tr>
<td>g-C3N4-BiVO₄</td>
<td>30 W simulated sunlight</td>
<td>Methylene blue (10 mg l⁻¹)</td>
<td>CL = 50 mg, tᵣ = 70 min</td>
<td>3D</td>
<td>~68%</td>
<td>[160]</td>
</tr>
<tr>
<td>g-C3N4</td>
<td>Simulated sunlight</td>
<td>Methylene blue (5 mg l⁻¹)</td>
<td>CL = N/A, tᵣ = 120 min</td>
<td>3D</td>
<td>96.5%</td>
<td>[155]</td>
</tr>
<tr>
<td>g-C3N4-CDsᵃ</td>
<td>300 W visible</td>
<td>Phenol (10 mg l⁻¹)</td>
<td>CL = 1 g l⁻¹, tᵣ = 200 min</td>
<td>3D</td>
<td>87%</td>
<td>[161]</td>
</tr>
<tr>
<td>g-C3N4</td>
<td>300 W visible</td>
<td>Methylene blue (50 mg l⁻¹)</td>
<td>CL = 1 g l⁻¹, tᵣ = 5 h</td>
<td>3D</td>
<td>66%</td>
<td>[154]</td>
</tr>
<tr>
<td>g-C3N4-Ag-Fe₃O₄</td>
<td>300 W visible</td>
<td>Tetracycline (20 mg l⁻¹)</td>
<td>CL = 0.5 g l⁻¹, tᵣ = 90 min</td>
<td>3D</td>
<td>88%</td>
<td>[162]</td>
</tr>
<tr>
<td>g-C3N4-Fe₃O₄-BiOI</td>
<td>50 W visible</td>
<td>Rhodamine B (4.8 mg l⁻¹)</td>
<td>CL = 0.4 g l⁻¹, tᵣ = 180 min</td>
<td>3D</td>
<td>~100%</td>
<td>[163]</td>
</tr>
</tbody>
</table>

PE = photodegradation efficiency.

tᵣ = irradiation time.

CL = catalyst loading.

ᵃ Carbon dots.
Table 6. Summary of photocatalytic performance of other nanocomposites composites.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Light source</th>
<th>Pollutant</th>
<th>Experimental conditions</th>
<th>Dimensionality</th>
<th>PE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other metal oxide based photocatalysts</td>
<td>Cu$_2$O–rGO</td>
<td>400 W visible</td>
<td>Methylene blue (10 mg l$^{-1}$)</td>
<td>CL = 0.33 g l$^{-1}$</td>
<td>2D</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>Cu$_2$O–BiVO$_4$</td>
<td>54 W visible</td>
<td>Methyl orange (10 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$</td>
<td>3D</td>
<td>89%</td>
</tr>
<tr>
<td></td>
<td>WO$_3$–rGO</td>
<td>200 W visible</td>
<td>Sulfamethoxazole (10 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$</td>
<td>2D</td>
<td>>98%</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$–CdO</td>
<td>30 W UV</td>
<td>Malachite green (50 ppm)</td>
<td>CL = 0.3 g l$^{-1}$</td>
<td>2D</td>
<td>~100%</td>
</tr>
<tr>
<td></td>
<td>Ag$_3$PO$_4$@ polyaniline</td>
<td>250 W UV</td>
<td>Phenol (10 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$</td>
<td>2D</td>
<td>~100%</td>
</tr>
<tr>
<td>Hydrocarbons/polymer-enhanced photocatalysts</td>
<td>Fe$_3$O$_4$–β-cyclodextrin</td>
<td>Sunlight</td>
<td>Bisphenol A (20 mg l$^{-1}$)</td>
<td>CL = N/A</td>
<td>0D</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>ZnO–PMMA</td>
<td>UV</td>
<td>Methylene blue (4.8 mg l$^{-1}$)</td>
<td>CL = 50 g l$^{-1}$</td>
<td>0D</td>
<td>~60%</td>
</tr>
<tr>
<td></td>
<td>Fe$_3$O$_4$–PVA@PHB–PCL</td>
<td>400 W visible</td>
<td>Methylene blue (16 mg l$^{-1}$)</td>
<td>CL = NFM</td>
<td>2D</td>
<td>~82%</td>
</tr>
<tr>
<td></td>
<td>CuPc–rGO</td>
<td>300 W visible</td>
<td>Rhodamine B (24 mg l$^{-1}$)</td>
<td>CL = 0.25 g l$^{-1}$</td>
<td>0D</td>
<td>96.2%</td>
</tr>
<tr>
<td></td>
<td>Polyaniline–ZnO</td>
<td>250 W visible</td>
<td>Methyl orange</td>
<td>CL = 1 g l$^{-1}$</td>
<td>0D</td>
<td>98.3%</td>
</tr>
<tr>
<td></td>
<td>Chitosan–Cu–TiO$_2$</td>
<td>visible</td>
<td>Methyl orange (16.4 mg l$^{-1}$)</td>
<td>CL = 7.1 g l$^{-1}$</td>
<td>0D</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>PAN–CNTsa</td>
<td>100 W UV</td>
<td>Indigo carmine (10 mg l$^{-1}$)</td>
<td>CL = NFM</td>
<td>2D</td>
<td>~100%</td>
</tr>
<tr>
<td>Non-oxide type photocatalysts</td>
<td>CdS–g-C$_3$N$_4$–rGO</td>
<td>350 W visible</td>
<td>Atrazine (10%)</td>
<td>CL = 0.44 g l$^{-1}$</td>
<td>2D</td>
<td>70.8%</td>
</tr>
<tr>
<td></td>
<td>CdS–Bi$_2$S$_3$</td>
<td>300 W UV</td>
<td>Methyl red (10 mg l$^{-1}$)</td>
<td>CL = 0.2 g l$^{-1}$</td>
<td>1D</td>
<td>~99%</td>
</tr>
<tr>
<td></td>
<td>Cu–Au–ZnS</td>
<td>Solar Light</td>
<td>4-Nitrophenol (25 mg l$^{-1}$)</td>
<td>CL = 0.71 g l$^{-1}$</td>
<td>0D</td>
<td>62.9%</td>
</tr>
<tr>
<td></td>
<td>Sn$_2$–rGO</td>
<td>150 W visible</td>
<td>Methyl orange (9.82 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$</td>
<td>2D</td>
<td>91.7%</td>
</tr>
<tr>
<td></td>
<td>AgI–BN</td>
<td>150 W simulated sunlight</td>
<td>Rhodamine B (10 mg l$^{-1}$)</td>
<td>CL = 1 g l$^{-1}$</td>
<td>2D</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>ZnS</td>
<td>18 W visible</td>
<td>Methyl red (50 mg l$^{-1}$)</td>
<td>CL = 0.5 g l$^{-1}$</td>
<td>0D</td>
<td>95.1%</td>
</tr>
</tbody>
</table>

Note: PE = photodegradation efficiency.
t_t = irradiation time.
NFM = nano fiber membranes.
CL = catalyst loading.
a Fe$_3$O$_4$–poly(vinyl alcohol) @ poly(3-hydroxybutyrate)-poly (ε-caprolactone).
b Copper Phthalocyanine-reduced graphene oxide.
c Polyacrylonitrile–carbon nanotubes.
A comparatively more complex design of a photocatalytic reactor, as proposed by Pirila, is illustrated in figure 10(b). This reactor consists of a Teflon vessel with a UV-A lamp enclosed in a quartz tube, fixed in the middle of the reactor cell. In this study, the irradiance in the annulus of the reactor was measured to be 52 W m$^{-2}$. The performance of the reactor was evaluated using four model pollutants which were diuron (herbicide), p-coumaric acid (agro-industrial wastewater), phthalic anhydride and bisphenol A (plasticizers). The initial concentration of the pollutants was 15 mg l$^{-1}$ and the experiments were done with a catalyst dose of 200 mg l$^{-1}$.

Synthetic air was fed into the reactor and a constant agitation of the test solution was provided by a magnetic stirrer. It was concluded that, of the four pollutants, diuron was removed most efficiently while bisphenol A was found to be most difficult to be removed. However, it was found that the treatment of industrial wastewater matrix is much more difficult than the treatment of synthetic solution with this application. This is because the wastewater has a higher concentration of different contaminants, and they are presumably competing for the possible active sites on the catalyst materials [189]. This demands for a more efficient reactor
design with more active sites. It should be noted that the design configurations of photocatalytic reactors can be summarized into two types [42, 190]:

i. slurry type photocatalytic reactors;
ii. fixed bed type reactors.

Slurry type photocatalytic reactors utilize suspended photocatalyst particles which provide a higher contact area between the photocatalyst and the contaminated solution. Abramovic et al. designed a similar reactor by using ZnO in a laminar falling film reactor as shown in figure 11(a) [192]. The reactor consists of a set of six 18 W UV lamps, which can provide wavelengths up to 366 nm, enclosed in an aluminum housing. The lamps are arranged in a symmetrical way around the centered glass column. In order to prevent the external radiation, the pipes were placed in non-transparent plastic tubes, and the feed tank was placed in a wooden box in this study. The aqueous suspension of ZnO and thiacloprid insecticide in the feed tank was continuously circulated around the tank and thiacloprid insecticide in the feed tank was continuously supplied to the reactor column and it was concluded the rate of degradation increased with the increase in the ZnO loading and polymers such as polyacrylonitrile [200], polyethylene-terephthalate [201] and polysulfone [194]. On the other hand, Fe₃O₄-based nanomaterials aid with the magnetic separation, and reduce the cost associated with the additional separation unit. Therefore, Fe₃O₄-based photocatalysts can be more suitable for slurry-type photoreactors. However, Fe₂O₃ and ZnO are also emerging as promising candidates as the filler material in photocatalytic membrane reactors (PMRs) [182, 183, 202]. PMRs are hybrid fixed-bed type reactors which combine membrane separation with heterogeneous photocatalysis, and carry great potential for sustainable water and wastewater treatment [193].

3.4. Fundamental parameters

The efficiency of photocatalytic water or wastewater treatment, usually calculated in terms of removal efficiency [31], depends upon various parameters which will be discussed in this section. The removal efficiency (%) and equilibrium adsorbed concentration, q (mg g⁻¹) of the metal ions can be calculated by (1) and (2), where C₀ and Cᵣ are the initial and residual concentration of metal ions (mg l⁻¹) in aqueous solution, V is the total volume of solution (l) and M is the adsorbent mass (g) [31].

\[
\text{Removal Efficiency (\%)} = \left(\frac{C_0 - C_r}{C_0}\right) \times 100, \quad (8)
\]
\[
q = (C_o - C_r) \times \frac{V}{m} \quad (9)
\]
3.4.1. Concentration of contaminants. It has been observed that, under similar operating conditions, change in the initial concentration of contaminants results in different irradiation time required to complete the disinfection or demineralization. Presence of excessive amount of contaminants reduces the overall process efficiency by saturating the TiO$_2$ surface [36, 42]. However, some organic substrates, such as oxalic acid, undergo direct transformation to carbon dioxide and water without the formation of intermediate compounds [42]. It should also be noted that increased contaminant concentration will act as a blocking surface between the incident photons and the catalyst [72].

In a study conducted by Pirila et al the degradation of four different model pollutants was studied over TiO$_2$ P25. The contaminants were diuron (herbicide), p-coumaric acid (found in agro-industrial wastewater), bisphenol A and phthalic anhydride (plasticizers). The results (illustrated in figure 12) indicate that the removal performance was affected as the concentration of contaminants was increased. When the concentration was increased to 20 mg l$^{-1}$, even 180 min of irradiation was not sufficient to completely remove the pollutants. However, diuron was not considerably affected by the initial concentration, and was effectively removed with all the tested initial concentrations [189]. Therefore, the dependency of the reaction rate on the contaminants' concentration depends strongly on the type of organic contaminants.

3.4.2. Temperature. Many studies have found that the photocatalytic reaction rate is strongly dependent on temperature [34, 36, 42]. Shen et al studied and compared the adsorption rates of Cu$^{2+}$, Cr$^{6+}$, Ni$^{2+}$ and Cd$^{2+}$ on Fe$_3$O$_4$ at different temperatures. In this study it was concluded that the adsorption rates of Cr$^{6+}$, Ni$^{2+}$ and Cd$^{2+}$ increased with temperature whereas the adsorption rate of Cu$^{2+}$ was almost independent of temperature [63].

It has been observed that at temperatures above 80 °C, the adsorption of reactants on the TiO$_2$ surface is disfavored and the recombination of charge carriers is favored [34, 36, 42]. On the other hand, temperatures as low as 0 °C have been found to increase the apparent activation energy which limits the desorption of the final product [34]. Therefore, optimum reaction temperature for the reaction is reported to be in the range of 20°C–80 °C.

3.4.3. pH. pH is one of the most significant operating parameters that affects the size of catalyst aggregates, charge...
on the catalyst particles, and the position of conduction and valence bands [36, 42]. Many studies have reported a zero point charge (ZPC) pH value for TiO\textsubscript{2} which strongly affects its charge [34, 36, 42, 203, 204]. ZPC is the value at which the TiO\textsubscript{2} surface has no charge and hence the electrostatic attraction between the photocatalyst particles and water pollutants is minimal. If the pH of the aqueous solution is below the ZPC value, the TiO\textsubscript{2} surface becomes positively charged and exerts an electrostatic force towards the negatively charged compounds. On the other hand, if the pH is above the ZPC value, TiO\textsubscript{2} surface gets negatively charged and repels the anionic compounds in water, according to the following reactions [34, 42, 203]:

At pH < ZPC: TiOH + H+ ⇌ TiOH\textsubscript{2}+,

At pH > ZPC: TiOH + OH− ⇌ TiO2− + H\textsubscript{2}O

The pH also affects the mean particle size of the TiO\textsubscript{2} aggregates. It has been observed that at pH close to the ZPC value, the particles become larger due to zero surface charge which inhibits the interactive rejection necessary to separate the particles [34]. For experiments with synthetic solutions such as p-toluidene, aniline, and 2,4-xylene, the TiO\textsubscript{2} has been found to be more effective in acidic and slightly alkaline media. However, in the case of the purification of ground water, a pH of 3.5 has been suggested as optimal for the degradation of phenol [28].

Figure 13(a) illustrates the relationship of pH with the phenol removal efficiency by different amounts of TiO\textsubscript{2} loading. The optimum pH reported in this study was approximately 6–10 for the catalyst loading of 25 mg L-1, 100 mg L-1, as well as 500 mg L-1 [197]. On the other hand, figure 13(b) shows the photocatalytic activity of ZnO for the removal of thiacloprid at the pH values of 3, 6.8, 8.2 and 10 [192]. The results suggest the pH of 6.8 gives much higher rate of thiacloprid removal than other experimental pH values. In case of Fe\textsubscript{3}O\textsubscript{4}, Shen has suggested an optimum pH of around 4.5 for Fe\textsubscript{3}O\textsubscript{4} photocatalyst, for the optimum removal of toxic metal ions from wastewater, however, the adsorption rate of Cu2+ is almost independent of pH, just like it is independent of temperature as discussed before [63]. Therefore, pH is a very important parameter for the design of an effective water purification system.

3.4.4. Morphology of the photocatalyst. Photocatalysts with different morphologies generally do not display the same photocatalytic behavior due to the number of active facets, distinct active sites, and associated adsorption–desorption ability to reactant [61]. The photocatalytic behaviors of ZnO, TiO\textsubscript{2}, graphene and Fe\textsubscript{3}O\textsubscript{4} have been studied in different forms such as nanowires [42], nanorods [7, 42, 71, 114], nanocolumns [71], nanofibers [42] and nanoparticles [63, 68, 105, 111]. It has been reported that the photocatalytic activity is strongly dependent on the shape and size of the photocatalyst. Since the shape affects the surface area as well as the surface area to volume ratio, it affects the rate of reaction by minimizing or maximizing the contact area between the reactants and the photocatalyst. In general, smaller the particle size, the larger the surface area, and thus higher concentration of active sites per square meter [190]. It should also be noted that the dimensionality of the nanomaterials also plays a tremendous role in the overall reaction rate. For example, the superparamagnetic properties of Fe\textsubscript{3}O\textsubscript{4} are optimized particularly in the form of zero-dimensional nanoparticles due to the finite size effect [62]. On the other hand, nanofibers have been reported to have an additional benefit that they can be commercially fabricated into microfiltration and ultrafiltration membranes [42].

3.4.5. Reaction time. The absorption or removal efficiency is strongly affected by the time of contact of the reactants as well as the irradiation time of the semiconductor. While studying the adsorption rates of various heavy metal impurities on Fe\textsubscript{3}O\textsubscript{4} photocatalyst, it has been found that the adsorption rate is directly proportional to the contacting time [30, 63]. However, some pollutants such as Cu2+ and Cr6+, have been found to adsorb readily as compared to Ni2+.

Figure 13. (a) Relationship of the phenol removal efficiency with pH at different loadings of TiO\textsubscript{2}. (b) Removal rate of thiacloprid with ZnO at different pHs. Reprinted from [197]. Licensed under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). © 2015 Delnavaz et al.
3.4.7. Light wavelength and intensity

In most studies, it has been found that the overall photocatalytic reaction rate and removal efficiency is directly proportional to the amount of TiO₂ used [34, 42, 203]. This linear dependency continues up to a limiting value where the reaction rate becomes independent of the TiO₂ concentration. This limiting value depends upon the geometry and working conditions of the photoreactor, as well as on the total proportion of TiO₂ which is fully illuminated. Therefore the catalyst dose should be carefully adjusted in order to avoid excessive dosage, and thus reducing the overall cost of the treatment process [34, 36, 42].

3.4.8. Dissolved oxygen

Dissolved oxygen is one of the key parameters in TiO₂ photocatalysis as it contributes in the stabilization of radical intermediates, direct photocatalytic reactions as well as mineralization. It also ensures the presence of sufficient electron scavengers for the prevention of recombination of charge carriers, by trapping the photo-generated electrons. Additionally, DO also provides adequate buoyant force in photocatalytic reactors for the complete suspension of TiO₂ particles [42]. The overall reaction involving the photo-mineralization of organic pollutants can be summarized by the given equation [34, 36],

\[
\text{organic pollutant} + \text{O}_2 \xrightarrow{\text{ultrabandgap energy}} \text{CO}_2
\]

\[
+ \text{H}_2\text{O} + \text{mineral acids}
\]

Hence, there will be no photo-mineralization unless oxygen is present [36].

3.5. Improving the photocatalytic efficiency

The photocatalytic performance can be expressed in terms of quantum yield, which can be defined as the ratio between the reaction rate and the photonic flux, i.e. as the ratio of the number of molecules degraded per second to the number of...
incident efficient photons per second [205]. Mathematically,
\[
\text{quantum yield} = \frac{\text{number of molecules degraded/transformed}}{\text{number of incident photons}}.
\]

One of the main drawbacks with TiO\(_2\) solar photocatalysis is the electron/hole recombination, which is accompanied by the dissipation of energy in the form of heat, consequently decreasing the efficiency of the process as well as affects the quantum yield. In the absence of proper electron acceptors, this is a major energy-wasting step. Using oxygen as an electron scavenger solves this problem up to some extent but gives low mineralization photo-efficiency [34].

Although TiO\(_2\) photocatalysis shows high activity and stability under UV light, but it only comprises 5% of the solar spectrum. In order to increase the photo-efficiency of the process, the photocatalyst should be made capable to utilize the visible spectrum. Various strategies have been adopted to solve these problems which include [34]:

- Using chemical oxidants.
- Doping and modifying the TiO\(_2\) surface.
- Using photosensitizers coupled with TiO\(_2\) photosynthesis.
- Combining semiconductor photocatalysis with other AOPs [34].

3.5.1. Chemical oxidants. Chemical oxidants such as hydrogen peroxide, peroxodisulphate, chlorate and bromate can prevent electron–hole recombination by adding electron acceptors to the reaction. This is because the addition of oxidants increases the number of trapped electrons [34, 206]. Oxidants also generate more -OH radicals and other oxidizing species. Additionally, the oxidation rate of intermediate compounds is also increased by the addition of oxidants. Moreover, the oxygen supply for the reaction may sometimes be inadequate, due to either oxygen consumption or slow mass transfer of oxygen. Such problems caused by the O\(_2\) starvation can also be prevented by the addition of oxidants like hydrogen peroxide. However, the oxidant should be able to eventually dissociate into harmless compounds [34, 206].

3.5.2. Doping and modifying the semiconductor surface. Pure and unmodified TiO\(_2\) works at mild conditions with mild oxidants, at utilizes only the UV spectrum. However, at higher concentration of contaminants, the process gets complicated and challenging due to catalyst deactivation, slow kinetics, and low photo-efficiencies. In order to use unmodified TiO\(_2\) for practical applications such as the treatment of industrial and environmental effluents, artificial light has to be employed which adds to the cost of the overall process [34].

However, this high cost can be avoided and the catalyst deactivation can be prevented by modifying or doping TiO\(_2\) with nitrogen, sulfur, copper or noble metals. During last few years, transitional metal ion doping has also been proven very useful.

Another way of modifying TiO\(_2\) for photocatalysis is by coupling it with another semiconductor with a smaller bandgap, as discussed before. This can be achieved only when [34]:

- The small bandgap semiconductor is able to be excited by visible light.
- Both semiconductors are photocorrosion free.
- Electron injection is fast and efficient.
- The CB of the smaller band gap semiconductor is more negative than the large band gap semiconductor [34].

3.5.3. Photosensitizers. Dyes having redox ability and visible light sensitivity can be used with TiO\(_2\) for the energy conversion of visible light. These dyes, when excited, can inject electrons to the CB of semiconductors to initiate the catalytic reactions under visible light illumination. In such system, the dye, instead of the photocatalyst, absorbs the light and gets photo-excited. This is important considering that the industrial textile waste water consists a large amount of dyes [34, 207]. Moreover, in many studies graphene and carbon nanotubes are reported to behave as photosensitizers under visible light [33, 208, 209]. Sensitized photocatalysis typically causes rapid destruction of chromophore structure into smaller organic species, leading to the final mineralization of the dye [34].

3.5.4. Combining semiconductor photocatalysis with other AOPs. The photocatalytic efficiency can be greatly enhanced by coupling semiconductor photocatalysis with other processes such as ozone treatment, vacuum ultraviolet treatment, or using hybrid processes such as PMRs, as discussed before in section 3.2.6 [34, 193, 210]. Kertész studied a low pressure microfiltration system to find the optimal conditions for a PMR by using hollow fibers, and to separate and recover the photocatalyst post-treatment [211]. Papageorgiou did the same by using Ca alginate fibers which provide an additional benefit of being transparent [3]. However, fouling of the membrane by impurities is one possible drawback of this hybrid technology, which may often result in an increased pressure drop or a decrease in the permeate flux. Similarly, Gebregiorgis combined heterogeneous photocatalysis with biological oxidation and carried out a successful 90% discoloration of real textile wastewater by using TiO\(_2\) powder as the photocatalyst [212].

3.6. Recyclability

In order to implement heterogeneous photocatalysis into practical water and wastewater treatment applications, the overall cost of the process should be minimized. One of the ways to decrease the cost is to improve the recyclability of the photocatalyst. Many TiO\(_2\) and g-C\(_3\)N\(_4\) based photocatalysts have been studied for recyclability. For example, in a study conducted by Hong, a V\(_2\)O\(_5\)–C\(_3\)N\(_4\) photocatalyst has been tested for recyclability. It has been reported that the composite shows no apparent deactivation even after 5 cycles [82]. Similarly, polyacrylonitrile fibers coated with TiO\(_2\) have been reported to show excellent dye removal after several
cycles [200]. However, some amount of the photocatalyst is lost by the water currents after every cycle. As a result, many efforts have been made to further enhance the recyclability, which involve either of the following approaches:

- Immobilizing the photocatalyst.
- Making more efficient PMRs.
- Using magnetic photocatalysts

3.6.1. Immobilized photocatalysts. One of the main advantages of TiO$_2$ is that it can easily be immobilized by coating on a substrate such as quartz [196], glass [196], concrete [197], or transparent fluorine-doped tin oxide [70]. Similarly, the immobilization of g-C$_3$N$_4$ on Al$_2$O$_3$ substrate has been reported to be useful for the visible light photocatalytic removal of NO [50]. More interestingly, She et al recently developed a novel Au–ZnO–rGO foam that can be used as a self-standing recyclable photocatalyst. This 3D nanocomposite can be directly employed as an immobilized photocatalyst in recyclable photodegradation [21]. As discussed in section 3.4, immobilization helps to decrease the cost of the overall process by eliminating the separation and recovery chamber, but decreases the contact area between the photocatalyst and the reactants, consequently compromising the efficiency.

3.6.2. Photocatalytic membranes. One of the most critical limitations of conventional polymeric and ceramic membranes is that they can be fouled easily. Photocatalytic membranes have been reported to have better fouling resistance, as well as antimicrobial properties. Such membranes can be developed by assembling the nanomaterials into MF and NF membranes in different ways, which include assembling the nanoparticles into ultra-thin membranes, or fabricating a membrane with nanofibers or aligned nanotubes [213]. Two-dimensional nanosheets like graphene have also been reported to be useful for membrane applications [136]. Additionally, combination of nanowires with graphene sheets has also gained attention recently. Such type of structure provides anti fouling and antimicrobial properties, as well as hydrophilicity and aqueous stability [213–215]. In some studies, Fe$_3$O$_4$ and TiO$_2$ nanoparticles have also been successfully used as a filler for composite membranes [216, 217]. Hence, nanomaterials open a broad spectrum of recycling possibilities in the form of MF and NF membrane applications.

3.6.3. Magnetic photocatalysts. Another way to ensure the recyclability of the photocatalyst is to introduce a magnetic constituent into the photocatalytic nanocomposite. Thus, the photocatalyst can be magnetically recovered post treatment by the application of an external magnetic field. Additionally, the incorporation of magnetic components can also prevent the agglomeration of the photocatalyst particles during recovery. Fe$_3$O$_4$ is the most widely used magnetic material, and has been successfully used in core–shell configurations with ZnO [79, 102], TiO$_2$ [17], β-cyclodextrin [181] and Bi$_2$O$_3$ [105]. However, magnetic separation involves an additional time-consuming separation process, which limits the continuous flow of the photocatalytic reactor. Hence magnetic separation would be more suitable for batch-type processes.

3.7. Life cycle assessment

In order to implement these photocatalytic processes on a large scale, a life cycle assessment (LCA) is necessary. LCA is one of the most useful tools for the assessment of the environmental impacts of a process, as well its feasibility and the costs involved. Current literature contains a lot of information about the recyclability and reusability of these semiconductor photocatalysts [42, 203, 218]. Matthews studied the recyclability of TiO$_2$ by using the photocatalyst again and again and found almost the same removal efficiency after 20 passes. However, the efficiency of the photocatalytic process is strongly dependent on the quality of feedwater and preliminary cleaning treatments too. In another study, a LCA has been carried out for various AOPs including heterogeneous photocatalysis for the treatment of Kraft mill bleaching wastewaters. It has been reported that the environmental impact is mainly caused by the amount of electricity consumed, is barely affected by the production of the photocatalysts [219]. This is one of the reasons why so much research has been devoted to solar photocatalysis in the past decade.

Using LCA, the environmental impacts and waste discharges of a product can be individually identified and minimized. Some studies have been conducted in this regard [42] and a few pilot plants have been established to obtain the required data, such as the ones located at the PSA (Plataforma Solar de Almeria, Spain) and INETI (Instituto Nacional de Engenharia, Technologia Industrial e Inovaco, Portugal). One of these studies, in which ε-methyl-phenylglycine has been used as a target contaminant, suggests that heterogeneous photocatalysis requires a larger solar collector area than homogeneous photo-Fenton process, in order to provide the same amount of efficiency. However, compared to existing biological wastewater treatment techniques, it can still lower the eutrophication potential [220]. With research and exploration of more photoactive materials, it is possible to overcome the existing constraints and allow the expansion of this technology to industrial scale.

3.8. Photocatalysis on real water samples

In the last two years, considerable efforts have been made to utilize heterogeneous photocatalysis for real water samples [211]. Some of the most successful efforts involve combining heterogeneous photocatalysis with coagulation-flocculation [29], heterogeneous photo-Fenton [222] or biological oxidation [212]. However, as a stand-alone water treatment technique, this process still faces some limitations related to the operating parameters, which have been discussed in section 3.4.

In a study conducted by Booshehri et al an Ag–BiVO$_4$ nanocomposite has been used successfully for the inactivation of pathogens in well water as well in in the secondary
effluents from municipal water. It has been reported that the high concentrations of carbonates and bicarbonates in the well water does not affect the photocatalytic efficiency. However, the natural organic matter in the secondary effluents limited the process efficiency due to the competitiveness for the radicals generated [223]. In another study by Ye et al TiO$_2$ nanotube arrays have been tested for the removal of metoprol from synthetic solutions as well as from tap water. It has been reported that the photocatalytic efficiency reduced from 87% to 62% when using tap water [224]. Similarly, Deng et al used Ag modified phosphorous doped gC$_3$N$_4$-BiVO$_4$ nanocomposite for the removal of ciprofloxacin. In his study, the solutions have been made in actual lake water in order to study the photocatalytic efficiency in natural conditions, and a 92.6% efficiency has been obtained [225]. However, it cannot be neglected that the process becomes more challenging in real situations because of the varying types and concentrations of contaminants.

4. Future challenges and prospects

One of the key features for heterogeneous photocatalysis to be such a promising water treatment method, is that it can run at ambient temperature and pressure, utilizing atmospheric oxygen as oxidant. Furthermore, this process can be applicable to a variety of hazardous contaminants, ranging from organic contaminants such as pesticides, herbicides and detergents; to industrial contaminants such as dyes and toxic metal ions. However, after almost 30 years of extensive research and thorough studies of hundreds of photocatalytic semiconductors, there are still many aspects of this process that need to be addressed before its commercial implementation.

First, it should be determined whether the photocatalytic process should be used as a pre-treatment process or a stand-alone water purification technique. If used as a stand-alone technique, with current advancements, the required reaction time would still be much longer due to the slow kinetics of the reaction.

The second most important challenge is to eliminate the constraints related to operating parameters. Since the chemical composition and pH of industrial wastewater varies from region to region, efforts should be made for the development of photocatalytic materials which can be useful in a wide range of operating conditions such as temperature, pH and contaminant concentrations. For this purpose, a lot of research should be dedicated for the doping and modifications of TiO$_2$ as well as other semiconductors in order to achieve continuous irradiation with visible light, at a wider range of operating conditions. Another challenge comes in terms of catalyst immobilization strategy, which should be optimized in order to obtain maximum irradiated surface area of the photocatalyst. Catalyst immobilization is necessary to avoid the problems associated with catalyst recovery and agglomeration, which is a great issue in slurry-based photoreactors. Moreover, catalyst immobilization can also reduce the scale of the reactor by eliminating the separation and washing unit.

To answer the above concerns, more research should be focused on visible-light driven photocatalysis, as well as the photocatalytic reactor design in the coming years. Visible light-driven water treatment processes offer great potential to replace the conventional water and wastewater treatment techniques by offering a sustainable and environment-friendly alternative. As discussed in section 3.5, there are many ways to enhance the visible-light activity of semiconductors. It is suggested that doping and photosensitization are two of the most promising techniques for the future. Additionally, doping semiconductors with noble metals like gold or silver has been proven to be an efficient way to improve the visible-light activity of the semiconductors. A significant problem that still needs to be addressed is preventing the electron–hole recombination in the photocatalytic nanomaterials. Although semiconductor–graphene heterojunctions have contributed a lot to solve this issue, there is still a need for improving these heterojunctions for a more effective charge separation. It should also be noted that combining heterogeneous photocatalysis with other AOPs may not contribute a lot towards visible light activity, but it has a lot of potential for increasing the time efficiency of the process. Other than the visible light activity, effective design of photocatalytic reactor systems is also required, which can provide cost-effective, sustainable, and flexible alternative to the conventional water and wastewater treatment processes.

In terms of photocatalytic reactor design, the future design trends may find the continuous or fixed-bed type reactors more useful, as well as time and cost-efficient. So far, there have been two most efficient ways to increase the performance of continuous processes; one of them is to combine heterogeneous photocatalysis with membrane processes (PMRs), and the other one is to maximize the contact time between the solution and the immobilized photocatalyst. The photocatalytic reactor shown in figure 11(b) is an example of the latter. Additionally, such helical tube type photoreactors utilize the minimum land area, and thus are more economical. Therefore, it is suggested that the future research should be comparatively more inclined towards the development of multi-stage PMRs and highly efficient fixed-bed-type reactors. In case of fixed-bed type reactors, efforts should be made to increase the turbulence of water flow as well. If the current limitations are overcome, heterogeneous photocatalysis can be employed as a sustainable process for the treatment of water and wastewater in the upcoming decades and may provide a cheap and environment-friendly solution for coping with the rising demands of water globally.

5. Conclusion

Heterogeneous photocatalysis has been proven to carry significant potential for the degradation of organic compounds, bacteria and microorganisms, as well as the reduction of toxic metal ions present in water and wastewater. The environmentally friendly nature of this technique makes it a
promising candidate for these applications. Furthermore, many photocatalytic materials have been studied on various potential contaminants in the past three decades, and some of them have been proven useful in visible light too. However, so far, this technique has mainly been studied in laboratories, and not appreciably implemented in industries. It is suggested that the future studies should not only focus on the materials, but also on the photocatalytic reactor design. By optimizing the photocatalytic reactor design, this technique can overcome the remaining challenges associated nearly one-thirded with it.

Acknowledgments

The authors would like to acknowledge Zia Ur Rahman, Hassnaia Asgar and Dr Ali Nemati for reviewing this paper and providing their feedbacks.

Conflict of interest disclosure

The authors declare no conflict of financial interest.

ORCID iDs

Syed Nabeel Ahmed @ https://orcid.org/0000-0003-2070-4848
Waseem Haider @ https://orcid.org/0000-0003-4235-3560

References

[40] Shiraishi F and Ishimatsu T 2009 Toluene removal from indoor air using a miniaturized photocatalytic air purifier including a preceding adsorption/desorption unit *Chem. Eng. Sci.* 64 2466–72

[52] Akhavan O 2010 Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol *Carbon*. 49 11–8

[77] Chaudhuri R G and Paria S 2012 Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications Chem. Rev. 112 2373–453
[81] Han X, Kuang Q, Jin M, Xie Z and Zheng L 2009 Synthesis of thin nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties J. Am. Chem. Soc. 131 3152–3
[88] Costa dos Reis L, Vidal L and Canals A 2017 Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2,4,6-trinitrotoluene in water samples Anal. Bioanal. Chem. 409 2665–74
[93] Fu R and Zhu M 2016 Synthesis and characterization of the structure of Fe3O4 @ Graphene oxide nanocomposites J. Mater. Sci. 2 4–7
Nanotechnology 29 (2018) 342001

[108] Gu X, Li C, Yuan S, Ma M, Qiang Y and Zhu J 2016 ZnO based heterojunctions and their application in environmental photocatalysis Nanotechnology 27 1–21

[112] Ren S, Zhao G, Wang Y, Wang B and Wang Q 2015 Enhanced photocatalytic performance of sandwiched ZnO@Ag@CuO nanorod films: the distinct role of Ag NPs in the visible light and UV region Nanotechnology 26 1–10

[182] Korina E, Stoilova O, Manolova N and Rashkov I 2018 Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment J. Environ. Chem. Eng. 6 2075–84

to enhance building surface with self-cleaning and depolluting abilities. J. Clean. Prod. 165 1036–47

[208] Zhang Y, Zhang T, Li Y, Guo Y, Zhang N and Xu Y J 2012 Graphene transforms wide band gap ZaSn to a visible light photocatalyst, the new role of graphene as a macromolecular photosensitizer ACS Nano 6 9777–89

[211] Kertész S and Jiráňková H 2014 Submerged hollow fiber micro filtration as a part of hybrid photocatalytic process for dye wastewater treatment Desalination 343 106–12

