Kahadawala Cooray
Associate Professor
Department of Mathematics
Statistics
Pearce Hall 111
989-774-3543



Dr. Cooray is a professor of Mathematics at Central Michigan University

Affiliations

  • American Statistical Association
  • Mid-Michigan ASA Chapter

Honors and Awards

  • First Ph.D. graduate in mathematical sciences in the state of Nevada. Department of Mathematical Sciences, University of Nevada at Las Vegas, Summer 2008
  • Wolzinger Family Research Scholarship - Science - Grad award. University of Nevada at Las Vegas, Spring 2008

Education

  • Ph.D., University of Nevada at Las Vegas, 2008
  • B.Sc., University of Colombo, Sri Lanka, 1994

Professional Interests

  • Modeling continuous statistical distributions and inferences, with applications to actuarial and medical sciences

Teaching Areas

  • Statistics
  • Actuarial Science

Selected Publications & Presentations

  • Ortega, E. M. M., Cordeiro, G. M., Hashimoto, E. M., and Cooray, K. (2014). A log-linear regression model for the odd Weibull distribution with censored data. Journal of Applied Statistics, 41(1), 1859-1880.
  • Cooray, K., Cheng, C.-I. (2013). Bayesian estimators of the lognormal-Pareto composite distribution. Scandinavian Actuarial Journal DOI: 10.1080/03461238.2013.853368
  • Cooray, K. (2013). Exponentiated sinh Cauchy distribution with applications. Communications in Statistics—Theory and Methods, 42(21), 3838-3852.
  • Cooray, K. (2012). Analyzing grouped, censored and truncated data using the odd Weibull family. Communications in Statistics—Theory and Methods, 41(15), 2661-2680.
  • Cooray, K. (2010). Generalized Gumbel distribution. Journal of Applied Statistics, 37(1), 171-179.
  • Cooray, K., Ananda, M. M. A. (2010). Analyzing survival data with highly negatively skewed distribution: The Gompertz-sinh family. Journal of Applied Statistics, 37(1), 1-11.
  • Cooray, K., Gunasekera, S., and Ananda, M. M. A. (2010). Weibull and inverse Weibull composite distribution for modeling reliability data. Model Assisted Statistics and Applications, 5(2), 109-115.
  • Cooray, K. (2009). The Weibull-Pareto composite family with applications to the analysis of unimodal failure rate data. Communications in Statistics—Theory and Methods, 38(11), 1901-1915.
  • Cooray, K., Ananda, M. M. A. (2008). A generalization of the half-normal distribution with applications to lifetime data. Communications in Statistics—Theory and Methods, 37(9), 1323–1337.
  • Cooray, K. (2006). Generalization of the Weibull distribution: the odd Weibull family. Statistical Modelling, 6(3), 265-277.
  • Cooray, K., Gunasekera, S., Ananda, M. M. A. (2006). The folded logistic distribution. Communications in Statistics—Theory and Methods, 35(3), 385-393.
  • Cooray, K. (2005). Analyzing lifetime data with long-tailed skewed distribution: the logistic-sinh family. Statistical Modelling, 5(4), 343-358.
  • Cooray, K., Ananda, M. M. A. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.

Selected Presentations

  • Cooray, K. (August 2011). Exponentiated sinh Cauchy distribution with applications. Joint Statistical Meeting (JSM), American Statistical Association, Miami Beach, Florida.
  • Cooray, K. (August 2010). The odd Weibull family for modeling incomplete data. Joint Statistical Meeting (JSM), American Statistical Association, Vancouver, Canada.
  • Ananda, M. M. A., Gunasekera, S., Cooray, K. (August 2008). Folded parametric families. Joint Statistical Meeting (JSM), American Statistical Association, Denver, Colorado.
  • Ananda, M. M. A., Cooray, K. (August 2003). An alternative distribution to Weibull distribution that was overlooked in the literature. Joint Statistical Meeting (JSM), American Statistical Association, San Francisco.
  • Cooray, K., Ananda, M. M. A. (August 2003). Modeling insurance data with a composite lognormal-Pareto model. Joint Statistical Meeting (JSM), American Statistical Association, San Francisco.​