Lisa DeMeyer
Professor
Department of Mathematics
Differential Geometry
Pearce Hall 210
989-774-5595



Dr. DeMeyer is a professor of Mathematics at Central Michigan University

Affiliations

  • American Mathematical Society
  • Mathematical Association of America
  • Association for Women in Mathematics

Honors and Awards

  • College of Science & Engineering Award for Outstanding Teaching, Recipient 2017
  • Recipient of the 2009 Distinguished Teaching Award, given by the Michigan Section of the Mathematical Association of America
  • Honors Faculty of the Year Award for the 2006-2007 school year
  • College of Science and Technology Award for Outstanding Teaching, 2007

Education

  • Ph.D., University of North Carolina at Chapel Hill, 2000
  • B.S., Seattle University, 1993

Professional Interests

  • Differential Geometry
  • Geometry of Nilpotent Lie Groups

Selected Publications

  • DeMeyer, L.; DeCoste, R.; Mainkar, M. ``Graphs and metric 2-step nilpotent Lie algebras''. Adv. in Geometry, , 0(0), pp. -. Retrieved 26 Apr. 2018, from doi:10.1515/advgeom-2017-0052
  • L. DeMeyer, A. Schneider, The Annihilating-ideal graph of commutative semigroups, J. Algebra 469 (2017), 402–420.
  • DeMeyer, L.; DeCoste, R. ``Totally geodesic subalgebras in 2-step nilpotent Lie algebras''. Rocky Mountain J. Math, 45, No 5 (2015), 1425--1444.
  • DeMeyer, L.; DeCoste, R. R.; Mast, M. B.. ``Characterizations of Heisenberg-like Lie algebras.'' Journal of Lie Theory 21 (2011), 711--727.
  • DeMeyer, L.; Jiang, Y.; Loszewski, C; Purdy, E. ``Classification of commutative zero-divisor semigroup graphs''. Rocky Mountain J. Math. 40 (2010), no. 5.
  • DeMeyer, L.; Greve, L.; Sabbaghi, A.; Wang, J.`` The zero-divisor graph associated to a semigroup''. Comm. Algebra 38 (2010), no. 9.
  • Dias, A.; DeMeyer, L. ``Pythagorean Theorem in Fractal Art''. Book Chapter in The Pythagorean Theorem: The Story of Its Power and Beauty (p. 207-230). Amherst, NY: Prometheus Books.
  • DeMeyer, L.; D'Sa, M.; Epstein, I.; Geiser, A.; Smith, K. ``Semigroups and the zero divisor graph''. Bull. Inst. Combin. Appl. 57 (2009).
  • DeMeyer, L.;Nimbhokar, S. K.; Wasadikar, M. P. ``Coloring of meet-semilattices''. Ars Combin. 84 (2007).
  • DeMeyer, F.; DeMeyer, L. ``Zero divisor graphs of semigroups''. J. Algebra 283 (2005), no. 1.
  • DeMeyer, L. ``Closed geodesics in compact nilmanifolds''. Manuscripta Math. 105 (2001), no. 3.