MATHEMATICS COMPETENCY TEST

SAMPLE TEST 2005

- A scientific, non-graphing calculator is allowed for this test.
- The following formulas may be used on this test:

Area of a triangle:

 $A = \frac{1}{2}bh$

Area of a rectangle:

A = LW

Perimeter of a rectangle:

P = 2L + 2W

Area of a circle:

 $A = \pi r^2$

Circumference of a circle:

 $C = 2\pi r$

Distance traveled:

D = RT

Pythagorean theorem:

 $a^2 + b^2 = c^2$

a and b are legs of a right triangle; c is the hypotenuse

Quadratic formula:

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Slope of a line through the points (x_1, y_1) and (x_2, y_2) : $m = \frac{y_2 - y_1}{x_2 - x_1}$

Standard form of a line:

ax + by = c

Slope-intercept form of a line:

y = mx + b

Point-slope form of a line:

 $y - y_1 = m(x - x_1)$

· Answers may be found on the last page of this test.

MATHEMATICS COMPETENCY EXAM SAMPLE TEST

1. Evaluate:
$$|-7| - 3 \cdot 8 + 20 \div 2 =$$

- **a.** 42
- **b.** -14
- **c.** 21

Order of operations

e. 26

2.
$$\frac{\frac{5}{8}}{\frac{21}{40}} =$$
 a. $\frac{21}{25}$ **b.** $\frac{21}{64}$ **c.** 21 **d.** $\frac{1}{21}$ **e.** $\frac{25}{21}$

Simplify complex fraction

d.
$$\frac{1}{21}$$

3.
$$-2^4 =$$
 a. -16

- **b.** 16 **c.** 8
- **d.** --8

Use exponent rules; identify base, exponent, coefficient of exponential expression

- 4. $4x^0$ is: **a.** undefined

e. none of these

- **b.** 0 **c.** 4
- Use exponent rules

- e. none of these
- 5. $16^{1/2} =$ **a.** 4 **b.** $\frac{1}{4}$ **c.** 8 **d.** $\frac{1}{8}$ **e.** $\frac{1}{32}$

Use exponent rules

- 6. $\sqrt[3]{x^4}$ is the same as:

- **a.** $x^{3/4}$ **b.** $x^{4/3}$ **c.** $\frac{4x}{3}$ **d.** $3x^4$ **e.** $\frac{x^4}{3}$
- Use exponent rules

7.
$$A = kB$$
 where $k > 0$. If B increases, A will:

- a. increase
- **b.** decrease
- c. stay the same
- Direct and inverse
- **d.** can't tell without knowing the values of A and B
- variation; ratio

8. Simplify and write your answer without negative exponents:

Use exponent rules

$$\left(\frac{-3x^2}{y}\right)^{-2} = ?$$

- **a.** $\frac{6y}{x^4}$ **b.** $\frac{9x^0}{y^2}$ **c.** $\frac{6x^4}{y^2}$ **d.** $\frac{y^2}{9x^4}$ **e.** none of these
- 9. Subtract: $(5x^2 2xy + 3y^2) (-4x^2 + xy 3y^2) =$

Operations on polynomials

- **a.** $9x^2 xy$ **b.** $9x^2 xy + 6y^2$ **c.** $9x^2 3xy$
- **d.** $9x^2 3xy + 6y^2$ **e.** none of these
- 10. Multiply: (3x+5)(x-4) =

Operations on polynomials

- **a.** $3x^2 20$
- **b.** $3x^2 + 7x 20$ **c.** $3x^2 7x 20$

- **d.** $3x^2 7x + 20$
- e. none of these
- 11. Expand: $(2x-5)^2 =$

Operations on polynomials

- **a.** 4x-10 **b.** $4x^2-25$ **c.** $4x^2-10x+25$
- **d.** $4x^2 + 25$ **e.** $4x^2 20x + 25$
- 12. Multiply $3x^2y(4xy-2y^3-5x^4y^2)$

Operations on polynomials

- **a.** $12x^3y^2 2y^3 5x^4y^2$ **b.** $7x^3y^2 x^2y^4 2x^6y^3$
- **c.** $12x^3y^2 6x^2y^4 15x^6y^3$ **d.** $12x^2y 6x^2y^3 15x^6y^2$

- e. none of these
- 13. Divide: $\frac{15m^3n^4 + 3mn^2 12mn}{3mn^2} =$

Operations on polynomials

- **a.** $12m^3n^2 9n$ **b.** $5m^2n^2 + 1mn 4mn^2$ **c.** $5m^3n^2 4n$
- **d.** $5m^2n^2 + 1 \frac{4}{n}$ **e.** none of these

14. The greatest common factor of the polynomial $12a^2b^2 + 18ab^3 - 24a^3b^2$

Determine the GCF of a

- **a.** 12ab **b.** $6a^2b^2$ **c.** $24a^3b^3$ **d.** 6ab **e.** none of these

polynomial; factor monomial from a polynomial

15. One factor of $6x^2 - 11x - 10$ is:

Factor trinomial

- **a.** 3x + 10 **b.** 3x 2 **c.** 6x + 5

- **d.** 2x-5 **e.** can't be factored
- 16. When the formula: Ax + By = C is solved for B, the result is:

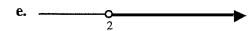
Evaluate a formula or solve for given variable

- **a.** $\frac{C-Ax}{v}$ **b.** $\frac{C-By}{Ax}$ **c.** $\frac{C-y}{Ax}$ **d.** $\frac{C}{Ax+y}$ **e.** none of these

- 17. Solve for x: $\frac{-3}{4}x + 2 = \frac{x}{6}$
 - **a.** $\frac{-12}{7}$ **b.** $\frac{2}{11}$ **c.** $\frac{-2}{7}$ **d.** $\frac{24}{11}$ **e.** none of these

Solve a linear equation involving fractional or integer coefficients

Solve a compound inequality involving fractional or integer coefficients


- 18. The solution for the inequality $-6 \le 10 2x < 14$ is:
 - **a.** $x \ge -2$
- **b.** $-8 \le x < 2$ **c.** $-2 < x \le 8$
- **d.** $-2 < x \le 12$
- e. none of these

19. The number line solution for the inequality |x+3| > 5 is: Solve or interpret absolute value inequality; read answer on number line

d.

20. When the system of equations $\begin{cases} 2x + y = 6 \\ 3x - 2y = 16 \end{cases}$ is solved,

the value of x is:

Solve a 2x2 system of linear equations

- **a.** 4
- **b.** 2 **c.** -2 **d.** 3 **e.** -3

21. The solutions of the equation $x^2 = 6x + 16$ would add up to:

Solve a quadratic equation

a.

b. 6

d. 4

0

22. The solution set for the quadratic equation $x^2 - 6x + 10 = 0$ would consist of:

Solve a quadratic equation

a. two real numbers

b. one real number

c. two imaginary numbers

d. one imaginary number e. none of these

23. In a triangle, the sum of the angles is 180°. If one angle is 25° greater than the smallest angle, and the other angle is 5° less than twice the smallest angle, find the measure of the smallest angle.

Application problem using linear or quadratic equations

a. 40°

b. 35° **c.** 52°

d. 29°

e. not enough information is given

24a. A salesperson earns a weekly base salary of \$210. She also earns a 6% commission on her total dollar amount of sales for the week. What is the dollar amount of sales in a week where she made total earnings of \$450?

Application problem using linear or quadratic equations involving percent

a. \$5.670

b. \$2,370 **c.** \$4,000

d. \$11,000

e. none of these

OR

24b. Kerri can buy a season pass to the high school girls soccer games for \$20. Without the pass, each game costs \$2.25. How many games would Kerri have to attend to make the season pass a better deal?

Application problem using linear or quadratic equations involving comparisons

6 a.

b. 7

8

d. 9

10

25. The length of a rectangle is 8 meters more than twice its width. If the rectangle has a perimeter of 94 meters, what is the length of the rectangle?

Application problem involving circumference, perimeter, or area, using linear or quadratic equations

a. 13 meters

b. 27 meters

c. 42 meters

d. 34 meters

e. none of these

26. Simplify completely:

$$\frac{4x^2 - 9}{2x^2 + x - 3} = ?$$

Rational expressions

b. $\frac{5}{x}$ **c.** $\frac{2x-3}{x-1}$ **d.** $\frac{2x-9}{x-3}$

e. none of these

27. Add the fractions and simplify:
$$\frac{5m}{6n^3} + \frac{7}{12m^2n} = ?$$

Operations with rational expressions

a.
$$\frac{10m^3 + 7n^2}{12m^2n^3}$$
 b. $\frac{5m^3 + 7n^3}{12m^2n^4}$ **c.** $\frac{5m + 7}{72m^2n^4}$ **d.** $\frac{5m^2 + 14n}{6mn}$

b.
$$\frac{5m^3 + 7n^3}{12m^2n^4}$$

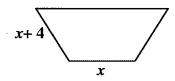
c.
$$\frac{5m+7}{72m^2n^4}$$

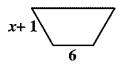
d.
$$\frac{5m^2 + 14n}{6mn}$$

e. none of these

28. Divide and simplify:
$$\frac{x}{x+2} \div \frac{3x^2}{x^2-4} = ?$$

Operations with rational expressions

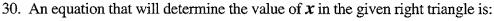

$$\mathbf{a.} \quad \frac{3x^3}{x-2}$$

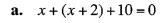

b.
$$\frac{3}{(x+2)^2}$$

a.
$$\frac{3x^3}{x-2}$$
 b. $\frac{3}{(x+2)^2}$ **c.** $\frac{x-2}{3x}$ **d.** $\frac{3}{-8}$ **e.** none of these

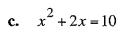
29. For the similar figures shown, an equation that will determine the value of
$$x$$
 is:

Application problem involving proportion

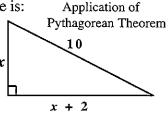



a.
$$x^2 + x = 6x + 24$$
 b. $x^2 + 4x = 6x + 6$ **c.** $2x + 4 = x + 6$

b.
$$x^2 + 4x = 6x + 6$$


c.
$$2x + 4 = x + 6$$

d.
$$x^2 + 5x + 4 = 6x$$
 e. none of these



a.
$$x + (x + 2) + 10 = 0$$
 b. $2x^2 + 4x - 96 = 0$

d.
$$2x^2 - 96 = 0$$

e. none of these

31. Completely simplify the radical $\sqrt{60x^2y^5}$

Roots and radicals

a.
$$30xy^{2.5}$$

b.
$$4xy \sqrt{15}xy$$

a.
$$30xy^{2.5}$$
 b. $4xy\sqrt{15xy}$ **c.** $20x^2y^2\sqrt{3y}$ **d.** $2xy^2\sqrt{15y}$

d.
$$2xy^2\sqrt{15y}$$

e. none of these

32. The solution the radical equation $\sqrt{x^2 + 3} = x + 5$ is:

Roots and radicals

- a. less than zero
- **b.** between 0 and 10
- c. greater than 10

- **d.** there is no solution
- e. none of these
- 33a. Two trains leave a station at the same time, traveling in opposite directions. Applications of The rate of the first train is 14 mph faster than that of the second train. linear equations: If they are 730 miles apart in 5 hours, find the rate of the second train. distance, rate, time
 - **a.** 110 mph
- 80 mph
- **c.** 71.6 *mph*

- d. 66 mph
- none of these e.

OR

33b. Find an equation (or pair of equations) representing the information in the following word problem:

Applications of linear equations: mixtures

A food stand sells hot dogs for \$2.00 and beef tacos for \$2.50 each. If the sales for the day total \$635, and 278 items were sold, how many hot dogs were sold?

a.
$$\begin{cases} x + y = 635 \\ 2x + 2.5y = 278 \end{cases}$$
 b.
$$\begin{cases} x + y = 278 \\ 2x + 2.5y = 635 \end{cases}$$
 c.
$$2x + (278 - x) = 2.5x$$

b.
$$\begin{cases} x + y = 278 \\ 2x + 2.5y = 635 \end{cases}$$

c.
$$2x + (278 - x) = 2.5x$$

d.
$$2x + 2.5(635 - x) = 278$$

- e. none of these
- 34. The slope of the line between the points (2, -1) and (4, 5) is:

Evaluate slope of a line

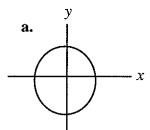
- **b.** 2 **c.** -3 **d.** -2

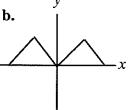
- 35. For the line 3x 2y = 12, the x-intercept is:

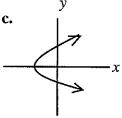
Find intercepts of a line

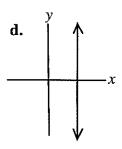
- **a.** (0, -6) **b.** (3, 0)
- **c.** (2, 0)
- **d.** (0, -2) **e.** none of these
- 36. Find the equation of a line through the point (3, 2) and parallel to Find equation of a line the line y = 6 - 3x.

 - **a.** 3x + y = 9 **b.** 3x + y = 11 **c.** y = 3x 7 **d.** y = 6x 16

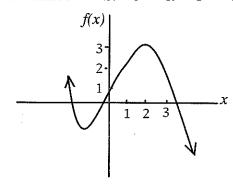

- **e.** none of these
- 37. If $f(x) = -x^2 + 4x 3$ then f(-5) = ?

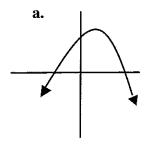

Understand function notation; identify function value

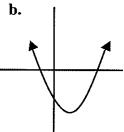

- **a.** 2 **b.** -8 **c.** 42 **d.** -48 **e.** none of these

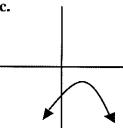

38. Which of the following graphs shows a function f(x)?

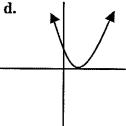
Recognize graph of a function




- e. none of these is a function
- 39. In the graph of function y = f(x) shown below, f(2) is:
 - a. not defined
- **b.** 0
- c.
- **d.** 2


Identify function value from a graph


40. The graph that shows a quadratic function with two real numbers as roots and a *negative* coefficient of the x^2 term is:


Analyze function properties for linear and quadratic functions

c.

e. none of these

ANSWER KEY--SAMPLE TEST

- 1. D
- 2. E
- 3. A
- 4. C
- 5. A
- 6. B
- 7. A
- 8. D
- 9. D
- 10. C
- 11. E
- 12. C
- 13. D
- 14. E
- 15. D
- 16. A
- 17. D
- 18. C
- 19. C
- 20. A

- 21. B
- 22. C
- 23. A
- 24a. C; 24b. D
 - 25. D
 - 26. C
 - 27. A
 - 28. C
 - 29. A
 - 30. B
 - 31. D
 - 32. A
- 33a. D; 33b. B
- 34. A
- 35. E
- 36. B
- 37. D
- 38. B
- 39. E
- 40. A