Solution to problem #658

PROBLEM: It is known that two of the roots of the cubic equation $x^3 + 3x^2 - 9x + c = 0$ are equal. If c > 0, find the value of c. **SOLUTION**: Let the roots be α , α and β , then we have

$$x^{3} + 3x^{2} - 9x + c = (x - \alpha)^{2}(x - \beta) = (x^{2} - 2\alpha x + \alpha^{2})(x - \beta)$$
$$= x^{3} - (\beta + 2\alpha)x^{2} + (2\alpha\beta + \alpha^{2})x - \alpha^{2}\beta$$

Equating the coefficients we obtain the equations $\beta + 2\alpha = -3$, $2\alpha\beta + \alpha^2 = -9$, $\alpha^2\beta = -c$. From the first equation $\beta = -3 - 2\alpha$, which when substituted in the second equation gives the quadratic $\alpha^2 + 2\alpha - 3 = 0$, so that $\alpha = -3$ or $\alpha = 1$. If $\alpha = -3$, then $\beta = 3 - 2\alpha = 3$, so $c = -\alpha^2\beta = -27$, so this is not possible. If $\alpha = 1$, then $\beta = -3 - 2\alpha = -5$, and so $c = -\alpha^2\beta = 5 > 0$, so we must have have c = 5.