Solution to problem #661

PROBLEM: Find all angles α such that $\cos(\alpha)$ is a rational number, but $\cos(2023\alpha)$ is an irrational number.

If such an α exists, give an explicit example.

If no such α exists, give a proof of nonexistence.

SOLUTION: There is no such α . In fact if $\cos(\alpha)$ is rational, then $\cos(n\alpha)$ is rational for each positive integer n. To see this, proceed by induction on n. The base case n = 1 is true by assumption. Note that the statement is also true for n = 0 because $\cos(0) = 1$ is rational.

Assume that $\cos(m\alpha)$ is rational for non-negative integers $m \leq n$. By the addition formulas for cosine,

$$\cos ((n+1)\alpha) = \cos(n\alpha)\cos(\alpha) - \sin(n\alpha)\sin(\alpha),$$
$$\cos ((n-1)\alpha) = \cos(n\alpha)\cos(\alpha) + \sin(n\alpha)\sin(\alpha).$$

We manipulate these two equations to find that

$$\cos\left((n+1)\alpha\right) = 2\cos(n\alpha)\cos(\alpha) - \cos\left((n-1)\alpha\right).$$

All of the terms on the right-hand side are rational, so $cos((n+1)\alpha)$ is rational.