Algebra Qualifying Exam August, 2009

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

- 1. Prove that $(\mathbb{Z}/32\mathbb{Z})^{\times}$ is not cyclic.
- 2. Let D_{16} be the dihedral group of order 16 and let s and r be the commonly used generators for reflection and rotation respectively. Let H denote the subgroup generated by r^4 and sr^2 .
 - (a) Determine the isomorphism type of H.
 - (b) It is known that D_{16} has three subgroups of order 8:

$$\langle s, r^2 \rangle, \langle r \rangle, \langle sr, r^2 \rangle$$

Determine the centralizer $C_{D_{16}}(H)$ and the normalizer $N_{D_{16}}(H)$.

- 3. (a) Prove that no group of order $84 = 2^2 \cdot 3 \cdot 7$ is simple.
 - (b) Let G be a group of order $2^k \cdot 3 \cdot 7$. Follow steps i through iii to prove that if $k \geq 19$, then no group of order $2^k \cdot 3 \cdot 7$ is simple.

We use \mathcal{P} to denote the set of all Sylow 2-subgroups of G.

- i. Describe the number of elements in \mathcal{P} .
- ii. Prove that there exists a group homomorphism $\varphi: G \longrightarrow S_{21}$ induced by conjugating elements in \mathcal{P} .
- iii. It is a fact that $2^{19} \nmid 21!$. (You may assume this without proof.) Prove that if $k \geq 19$, then the group homomorphism φ is not injective. Deduce that G is not a simple group.

- 4. Let $x^3 2x + 1$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^3 2x + 1)$. Let $p(x) = x^3 + 2x^2 1$ and let $q(x) = (x 1)^4$.
 - (a) Express each of $\overline{p(x) + q(x)}$ and $\overline{p(x)q(x)}$ in the form of $\overline{f(x)}$ for some polynomial f(x) of degree ≤ 2 .
 - (b) Prove that \overline{E} is not an integral domain.
 - (c) Prove that \overline{x} is a unit in \overline{E} .
- 5. Prove that a finite integral domain is a field. Deduce that if R is a finite commutative ring with identity, then every prime ideal of R is a maximal ideal.
- 6. (a) Determine the splitting field of $x^3 2$ over \mathbb{Q} , denoted E.
 - (b) Let G be the Galois group of E over \mathbb{Q} . For each subgroup of G, including G itself, determine its corresponding fixed field.
- 7. (a) Find the minimal polynomial of $\sqrt{5+2\sqrt{6}}$ over \mathbb{Q} . Determine the degree of the extension field $\mathbb{Q}(\sqrt{5+2\sqrt{6}})$ over \mathbb{Q} . (You must address the irreducibility of the polynomial.)
 - (b) Prove that the extension in part (a) is a Galois extension, and determine the isomorphism type of its Galois group.