Algebra Qualifying Exam August 19, 2013

Do all seven problems. Each problem is worth 10 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Let G be a group of order $435 = 3 \cdot 5 \cdot 29$. You may assume the following theorem:

Suppose H is a group with subgroups L_1, \ldots, L_s such that L_1, \ldots, L_s are all normal in H and $L_1 \cdots L_k \cap L_{k+1} = 1$ for $k = 1, \ldots, s-1$. Then $L_1 L_2 \cdots L_s \cong L_1 \times L_2 \times \cdots \times L_s$.

- (a) Prove that G has a normal subgroup P of order 5 and a normal subgroup R of order 29.
- (b) Let Q be a Sylow 3-subgroup of G. Prove that PQ is a cyclic subgroup of G of order 15.
- (c) Prove that G has a normal subgroup of order 3.
- (d) Prove that G is cyclic.
- 2. Determine the degree of the extension $\mathbb{Q}\left(\sqrt{\frac{1+\sqrt{-3}}{2}}\right)$ over \mathbb{Q} . Is this extension a Galois extension? If so, what is its Galois group?
- 3. (a) Prove that in a Principal Ideal Domain (PID) a nonzero element is irreducible if and only if it is a prime.
 - (b) Consider the ring $\mathbb{Z}[\sqrt{-3}]$ with the usual norm $N(a+b\sqrt{-3})=a^2+3b^2$. Show that $\mathbb{Z}[\sqrt{-3}]$ is not a PID by showing that $1+\sqrt{-3}$ is irreducible but not prime.
- 4. A group G is said to be *metabelian* if there exists a normal subgroup N of G such that N and G/N are both Abelian. Prove that any group of order 12 is metabelian.

- 5. (a) Let f(x) be a polynomial in F[x], where F is a field. Prove that F[x]/((f(x))) is a field if and only if f(x) is irreducible.
 - (b) Prove that $\mathbb{F}_5[x]/(x^3+3x+3)$ is a field.
 - (c) Determine the number of elements in the field $\mathbb{F}_5[x]/(x^3+3x+3)$.
- 6. Let $f: A \to B$ be a ring homomorphism. Recall that if $X \subseteq A$ and $Y \subseteq B$, then

$$f(X) = \{f(x) : x \in X\} \text{ and } f^{-1}(Y) = \{a \in A : f(a) \in Y\}.$$

Let I be an ideal of A and J be an ideal of B. We define the extension I^e of I to be the ideal of B generated by f(I): that is,

$$I^e := \left\{ \sum_{i=1}^n y_i f(x_i) : x_1, \dots, x_n \in I, y_1, \dots, y_n \in B \right\}.$$

Similarly, we define the *contraction* J^c of J to be $f^{-1}(J)$.

- (a) Prove that J^c is always an ideal of A.
- (b) Give an example to show that f(I) is not necessarily an ideal of B.
- (c) Prove that if J is prime, then either J^c is a prime ideal of A or $J^c = A$.
- (d) Give an example to show that if I is a prime ideal, then I^e need not be a prime ideal of B.
- 7. A subgroup H of a finite group G is called a *Hall subgroup of* G if its index in G is relatively prime to its order: (|G:H|,|H|) = 1.
 - (a) Recall that the Second Isomorphism Theorem for Groups says:

Let G be a group, let A and B be subgroups of G and assume $A \leq N_G(B)$. Then AB is a subgroup of G, $B \subseteq AB$, $A \cap B \subseteq A$ and $AB/B \cong A/(A \cap B)$.

Prove this theorem. (You may assume the First Isomorphism Theorem for Groups.)

(b) Use the Second Isomorphism Theorem for Groups to prove that if H is a Hall subgroup of G and $N \subseteq G$, then $H \cap N$ is a Hall subgroup of N.