Algebra Qualifying Exam

January 18, 1997

There are three parts. Part A covers linear algebra, part B covers group theory, and part C covers ring theory. To pass the exam, satisfactory performance on each of the three parts is expected.

In some places on this test you are instructed to do a certain number of questions from a larger number of questions. If you do more than the stated number of parts, only the first ones numerically or alphabetically will be scored.

Part A (60 points) In part 1, do any two (2) of a, b, or c. In part 2, do any four (4) of a-f. Each of the six parts is worth 10 points.

- 1. Do any two (2) of a, b, or c.
 - a. Consider two vector spaces V, W, both over a field F and of dimension 2. Show that there is an isomorphism between V and W.
 - b. Let V be the vector space of all polynomial functions p from \mathbf{R} into \mathbf{R} which have degree less than or equal to 1. Let t_1 and t_2 be distinct real numbers and let $L_i \colon V \to \mathbf{R}$ be defined by $L_i(p) = p(t_i)$ for i = 1,2.
 - i. Show that L_1 and L_2 are independent linear functionals on V. Do they form a basis for V*, the dual of V? Briefly support your answer.
 - ii. Find explicitly the basis for V of which $\{L_1,L_2\}$ is the dual basis.
 - c. Let V be a finite dimensional vector space of dimension n. Show that any subset of V which contains more than n vectors is linearly dependent.
 - 2. Do any four (4) of parts a-f on the next page.

a. i. Find the row-reduced echelon form of the following matrix.

- ii. What is the column rank of the above matrix?
- b. We know that F[-1,1], the set of all real-valued functions defined on [-1,1], is a vector space over \mathbf{R} . Let V = C[-1,1], the set of continuous functions on [-1,1], and $L(f) = \int_{-1}^1 f(t) \, dt$. Show that V is a vector space over \mathbf{R} and show that L is a linear functional (linear transformation) from V to \mathbf{R} .
- c. Suppose that V is a two dimensional vector space over \mathbf{C} . Let $T \in L(V,V)$, the set of all linear transformations from V to V. Suppose that the polynomial $p(\lambda) = \lambda^4 + 1$ annihilates T. Is T diagonalizable? Support your answer.
- d. Let D² be the second derivative operator on the set V of real valued quadratic polynomials. Find a matrix representation for D² and the transpose (D²)^t. What is the null space of D²? What is the null space of (D²)^t?
- e. What is the subspace of R³ annihilated by the set of linear functionals which follow?

$$f_1(x_1,x_2,x_3) = x_1 + 2x_2 + 2x_3$$

 $f_2(x_1,x_2,x_3) = 2x_2$
 $f_3(x_1,x_2,x_3) = -2x_1$ - $4x_3$

f. Find the coordinates of the vector (1,1,1) in the subspace spanned by the set of vectors $\{\alpha_1,\alpha_2,\alpha_3\}$ such that the matrix P with columnwise entries α_1 , α_2 , and α_3 (P = $[\alpha_1 \ \alpha_2 \ \alpha_3]$) has inverse

$$P^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Part B (60 points) Answer all five questions in this part.

- 1. Prove that the set theoretic union of two subgroups of a group is a subgroup if and only if one of the subgroups is contained in the other.
- 2. Let $f: G \rightarrow H$ be a homomorphism of groups. Suppose K is the kernel of f. Prove the following:
 - a. K is a subgroup of G.
 - b. K is a normal subgroup of G.
 - c. The quotient group G/K is isomorphic to the image of f.
- 3. Let GL(n,R) denote the group of all n x n matrices over R whose determinant is not zero. Let SL(n,R) = {A: A ∈ GL(n,R), det A = 1}. Prove that SL(n,R) is a normal subgroup of GL(n,R) and that GL(n,R)/SL(n,R) is isomorphic to the group of non-zero elements of R under multiplication.
- 4. a. State precisely the full content of the Sylow Theorems for a finite group G whose order is divisible by a prime p.
 - b. Prove that a group G of order 126 must have a normal subgroup of order 7.
 - c. Prove that a group G of order 1000 cannot be simple, i.e., G must have a normal subgroup N such that $N \neq \{e\}$ and $N \neq G$.
- 5. Let $G = \langle a \rangle$ be a cyclic group of order n. Prove that $G = \langle a^k \rangle$ if and only if gcd(k,n) = 1. Deduce that an integer k is a generator of \mathbf{Z}_n if and only if gcd(k,n) = 1.

Part C (60 points) Answer any five (5) of parts 1-7 below. Each is worth 12 points.

- 1. Suppose R is a ring and n is a positive integer. Are there any combinations of R and n for which $(x + y)^n = x^n + y^n$ for every $x,y \in R$? If so, state general conditions for which this is true. If not, prove why not.
- 2. Suppose f: $R \rightarrow S$ is a homomorphism from a ring R to a ring S. Suppose J is an ideal of S. Show that $f^{-1}(J)$ is an ideal of R.
- 3. Prove that $\mathbf{R}[x]/\langle x^2 + 1 \rangle \cong \mathbf{C}$ where $\langle x^2 + 1 \rangle$ denotes the ideal generated by $x^2 + 1$. Show they are isomorphic as rings.
- 4. Suppose R is a ring and S is a subring of R.
 - a. Which one of the following is true?
 - i. If M is an R-module, then M is an S-module.
 - ii. If M is an S-module, then M is an R-module.
 - b. Prove it.
- 5. Let F be a field. Do one (1) of the following.
 - a. State and prove necessary and sufficient conditions for f(x) to be invertible where $f(x) \in F[x]$.
 - b. State and prove necessary and sufficient conditions for f(x) to be invertible where $f(x) \in F[[x]]$.
- 6. Prove this part of the isomorphism theorems:

If S is a subring of R and I is an ideal of R, then $(S + I)/I \cong S/(S \cap I)$.

7. Prove <u>either</u> the "if" part <u>or</u> the "only if" part of the following theorem.

Let R be a commutative ring with identity. Let I be an ideal of R. Then I is a maximal ideal of R if and only if R/I is a field.