Algebra Qualifying Exam, January 2002

There are thirteen problems on three pages. The total point value of the exam is 120 points.

1. (10 points)

- (a) Consider the vector space $P_2(\mathbf{R})$ of all polynomials of degree two or less, over the field of real numbers \mathbf{R} What is the coordinate vector of $p(x) = (x+1)^2$ with respect to the standard basis $\mathbf{B} = \{1, x, x^2\}$?
- (b) Which of the following sets are also bases for $P_2(\mathbf{R})$? (Name all that are.)

i.
$$C = \{1 + x, 1 + x^2\}$$

ii. $D = \{1 + x, 1 + x + x^2\}$
iii. $E = \{1 + x, 1 + x^2, 2 + x + x^2\}$
iv. $F = \{1 - x, 1 + x, x^2\}$
v. $G = \{1, 1 + x, 1 + x^2, 1 + x + x^2\}$
vi. $H = \{1 + x, 1 + x^2, x + x^2, 1 + x + x^2\}$

- (c) Find the coordinate vector of p(x) with respect to one of the bases you found in (b). (Make sure the grader knows which basis you are choosing.)
- 2. (5 pts.) Suppose V is an n-dimensional vector space over \mathbf{R} , the set of reals, where n is a positive integer. Must V contain an m dimensional subspace for every integer m with $0 \le m \le n$? Why or why not?
- 3. (5 pts.) Let V be an inner product space and suppose $T:V\to V$ is a self-adjoint transformation. Prove that if \vec{v} and \vec{w} are eigenvectors of T with different eigenvalues then \vec{v} and \vec{w} are orthogonal. (Hint: consider $< T\vec{v}, \vec{w} > .$)
- 4. (5 pts.) The following set of integers $\{1, 9, 16, 22, 53, 74, 79, 81, a\}$ forms a group under multiplication modulo 91. What is a?

5. (10 pts.)

- (a) Let a be an element of a finite group G, and |a| = n. Show that $|a^k| = |a^{n-k}|$, for $0 \le k \le n$
- (b) Suppose b is a 10-cycle permutation. For which integers i between 2 and 10 is b^i also a 10-cycle?
- (c) Let a, and b be elements of a group G such that |a| = m and |b| = n and gcd(m, n) = 1. Show that $\langle a \rangle \cap \langle b \rangle = 1$.

- 6. (15 pts.) $T: V \to W$ be a module homomorphism.
 - (a) Define: null space of T. (An alternate word for "null space" is "kernel".)
 - (b) Prove the null space is a submodule of V.
 - (c) Prove that if S is a subspace of W then $T^{-1}(S)$ is a subspace of V.
- 7. (5 pts.) Let **P** be the set of polynomials over the reals **R**. Given $a \in \mathbf{R}$, define $g_a : \mathbf{P} \to \mathbf{R}$ by $g_a(p(x)) = p(a)$. Show that g_a is in \mathbf{P}^* , the dual space of P.
- 8. (10 pts.) Suppose G is a nonabelian group of order 4p, p a prime, and suppose that G has a normal subgroup of order 4. Prove that p=2 or p=3 and identify G in these cases.
- 9. (10 pts.) Let GL(n, R) denote the set of all $n \times n$ matrices over a ring R whose determinant is different from zero. Set $SL(n, R) = \{A : A \in GL(n, R) \text{ and } \det(A) = 1\}.$

You may assume that GL(n, R) is a group under matrix multiplication.

- (a) Prove that SL(n, R) is a normal subgroup of GL(n, R).
- (b) Prove that GL(n,R)/SL(n,R) is isomorphic to the group of nonzero elements of R under multiplication.
- 10. (5 pts.) A normal series of a group G is a chain (*) of subgroups

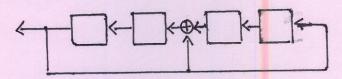
(*)
$$G = N_0 \supseteq N_1 \supseteq N_2 \supseteq ... \supseteq N_r = \{1\}$$

such that each N_i is normal in N_{i-1} . The factor groups of (*) are the groups N_{i-1}/N_i .

Find a normal series for S_4 of maximal length.

- 11. (15 pts.) Let $\zeta := e^{\pi i/4}$. Let Q be the field of rationals and $E := \mathbf{Q}(\zeta)$.
 - (a) Compute the minimal polynomial of ζ .
 - (b) Compute the Galois group of E over \mathbf{Q} .
 - (c) Find all subfields of E.
 - (d) Show the Galois correspondence between the subfields of E and the subgroup of the Galois group computed in part (b).

12. (10 pts.) Consider the linear feedback shift register below, acting on members of Z_2 , the field of order 2.



- (a) Describe the associated quotient ring.
- (b) Is the associated quotient ring a field? (If not, why not?)
- (c) Suppose the initial state of the shift register is 0 0 0 1. Find the state of the shift register 662 clock cycles later.
- 13. (15 pts.) A local ring is a commutative ring with unity which has a unique maximal ideal.
 - (a) Give an example of a finite local ring which is not a field.
 - (b) Give an example of an infinite local ring which is not a field.
 - (c) Prove that in a local ring R with maximal ideal M, the set of units is precisely those elements of R which are not in M.
 - (d) Give an example of a ring with unity, which has a maximal ideal M, yet has the property that there exist nonunits not in M.