January 2006 Algebra Qualifying Exam

There are 90 points possible on this exam (each problem is worth 10 points and you must do three problems in each section), a passing grade is typically 70 percent (63 points). Partial credit will be given sparingly - getting entire problems correct is better than amassing partial credit. Be aware that points will be taken for wrong statements.

MTH 525 - Linear Algebra

Do 3 of the 4 following problems.

(1) Let
$$A = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- (a) Find the minimal polynomial of A.
- (b) Find the rational form of A.
- (c) Find the Jordan form of A.
- (2) Let V_1, V_2, V_3 be finite dimensional vector spaces over a field F with $d_i = \dim(V_i)$. Suppose there are linear transformations $T: V_1 \to V_2$ and $S: V_2 \to V_3$ such that range(T) = nullspace(S).
 - (a) Show that $d_1 + d_3 \ge d_2$.
 - (b) Show that $d_1 + d_3 = d_2$ if and only if T is one-to-one and S is onto.
- (3) Let A, B be $n \times n$ matrices over a field F, and suppose that there exists a matrix P such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices (we say A and B are simultaneously diagonalizable). Prove that AB = BA.
- (4) Let A be an $n \times n$ matrix with complex entries, and suppose that A^m is the zero matrix for some $m \in \mathbb{N}$.
 - (a) Show that A^n is the zero matrix.
 - (b) Show that A is diagonalizable if and only if A itself is the zero matrix.
 - (c) If A^2 is the zero matrix, show that det(I + A) = 1.

MTH 623 - Group Theory

Do 3 of the 4 following problems.

- (1) Let G be a finite group. Let H be a subgroup of G of index p, where p is a prime. Prove that if p is the smallest prime dividing the order of G, then H is normal.
- (2) Prove that there does not exist a simple group of order 36.

(3) Let G a finite group of order greater than 1. Prove that if G is solvable then it has a normal abelian subgroup. [Hint: Consider minimal normal subgroups].

(4) Let G be a finite group, and suppose that its center, Z(G), is trivial. Prove that the order of G divides the order of Aut(G),

the automorphism group of G.

MTH 625 - Ring Theory

Do 2 of the first 3 problems, and do number 4. All rings are assumed to be commutative, with unity.

- (1) Let R be a ring.
 - (a) Given a subset $S \subseteq R$ of a ring R, define the ideal generated by S.
 - (b) Show that $\langle a, b \rangle$, the ideal generated by the pair of elements a and b, is equal to the set $\{ar_1 + br_2 : r_1, r_2 \in R\}$.
 - (c) Suppose a and b are ring elements where the principle ideals $\langle a \rangle$, $\langle b \rangle$ satisfy

$$\langle a \rangle + \langle b \rangle = R.$$

Show that, for any ring element c,

$$\langle a, c \rangle \cdot \langle b, c \rangle = \langle ab, c \rangle$$
.

- (2) Let R and S be rings and let $f: R \to S$ be a ring homomorphism which is onto S. Prove:
 - (a) if P is a prime ideal of R then f(P) is a prime ideal of S.
 - (b) if I is an ideal of R and P is a prime ideal of R containing I then P/I is a prime ideal of R/I.
 - (c) if I is an ideal of R then every prime ideal of R/I is of the form P/I where P is a prime ideal of R containing I.
- (3) Here \mathbb{Z} represents the ring of integers. Show:
 - (a) the ring of polynomials, $\mathbb{Z}[x]$, is a free \mathbb{Z} -module.
 - (b) the field of rationals, \mathbb{Q} , is not a free \mathbb{Z} -module.
- (4) Let $\zeta := e^{\frac{2\pi i}{7}}$ be a seventh root of unity and $\mathbb{Q}(\zeta)$ the field generated by the rationals and ζ .
 - (a) Give the minimal polynomial for ζ over \mathbb{Q} .
 - (b) Describe precisely the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} .
 - (c) List the normal subgroups of the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} and the corresponding subfields of $\mathbb{Q}(\zeta)$. (For each subfield F, $\mathbb{Q} < F < \mathbb{Q}(\zeta)$, describe F by providing a basis for F over \mathbb{Q} .)