A lgebra Qualifying Exam January 12, 2007

Each problem is worth ten points. A score of 65 (out of 90) is passing.

- 1. Let A be an $n \times n$ m atrix with entries in a field F of characteristic 0. Prove that A is invertible if and only if there is a polynom ialp(x) such that
 - (a) p(0) = 0
 - (b) p(A) = I.
- 2. Let V be a vector space over a field F. Prove that V has a basis. (Do not assume that V is finite dimensional.)
- 3. Let A, B be 3×3 complex matrices. Show that if A and B have the same characteristic and minimal polynomials, then A and B are similar.
- 4. Suppose G is a group of order 20 with an element g of order 4. Construct up to isom orphism all groups with this property.
- 5. Consider the following property, let's call it Property T, for "transitive": for any pair of nonidentity elements x,y in a group G there is an automorphism ϕ of G such that $\phi(x) = y$.
 - (a) Show that there is a group of order 27 with property ${\bf T}$.
 - (b) Show that there is only one group of order 27 with property T.
 - (c) Find all finite groups with this property.
- 6. Suppose that G is a simple group with a subgroup H of index n. Prove that the order of G must divide n!.
- 7. Recall that a ring is artinian if the descending chain condition holds on ideals. A ssum e that R is a commutative artinian ring with unity. Prove that every prime ideal in R is maximal.
- 8. Show that there exists a Galois extension K of Q, the field of rational numbers, whose Galois group G is cyclic of order 7. (Hint: consider cyclotom ic extensions.)
- 9. Recall that a field K is a lgebraically closed if every polynomial $f(x) \in K[k]$ splits in K. Let $F \subseteq E$ be an algebraic field extension. Prove that if every polynomial $f(x) \in F[k]$ splits in E, then E is algebraically closed.