Analysis Qualifying Exam

August 26, 9:00-12:00, 1995

Section A Answer $\underline{10}$ of the 12.

- 1. Prove that a sequence $\langle \vec{\mathbf{x}}_m \rangle$ in \mathbb{R}^n converges to $\vec{\mathbf{x}}$ in \mathbb{R}^n if and only if $x_{mj} \to x_j$ for each $j = 1, 2, \ldots, n$ where $\vec{\mathbf{x}}_m = (x_{m1}, x_{m2}, \ldots, x_{mn})$ and $\vec{\mathbf{x}} = (x_1, x_2, \ldots, x_n)$.
- 2. Prove the continuity of the following function. State carefully the theorem(s) used.

$$f(x) = \sum_{n=0}^{\infty} \frac{\sin nx}{1+n^2}$$
, for x real.

3. Is

$$f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

differentiable? Prove your answer.

- 4. (a) The Mean Value Theorem for Integrals for functions of one variable states that if f is continuous on [a, b], then there exists a point x₀ ∈ [a, b] such that ∫_a^b f(x) dx = f(x₀)(b a). Is there a parallel theorem for functions defined on a compact convex subset of ℝⁿ? If your answer is yes state and prove the result. If no, give an example to explain why such a result can not be valid.
 - (b) What conditions on the partial derivatives at a point imply that the point is a saddle point?
- 5. For each n let $f_n(x) = x^n$, for $x \in [0,1]$. Prove that $f_n(x) \to f(x)$ for all $x \in [0,1]$ where $f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1. \end{cases}$ Is the convergence uniform? Prove your answer. Does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$? Does this follow from any of the theorems you have learned? If yes, state the theorem. Or does this contradict any theorems?
 - 6. Let E be a countable subset of \mathbb{R} .
 - (a) Using the definition of outer measure prove that $m^*E = 0$.
 - (b) Is E measurable and what is its measure? Prove your answer.
 - 7. Let f be an integrable function on \mathbb{R} .
 - (a) Prove that there exists a set E_{∞} of measure zero such that f is finite for all $x \notin E_{\infty}$.
 - (b) Prove that there exists a sequence $\langle f_n \rangle$ of bounded measurable functions, each vanishing outside a set of finite measure such that $f_n \to f$ a.e.
 - 8. If F is absolutely continuous on [0,1] and $F'(x)=\frac{1}{\sqrt{x}}$ a.e., how would you compute F(x) for $x \in [0,1]$? Justify your arguments.

- 9. Give an example, if possible, of each of the following. Prove your answer.
 - (a) A function f on $[0, \infty)$ such that $\int_0^\infty f(x) dx$ exists as an improper Riemann integral but f is not Lebesgue integrable on $[0, \infty)$.
 - (b) A Lebesgue integrable function that is not Riemann integrable.
 - (c) A sequence $\{f_n\}$ of nonnegative integrable functions defined on [0,1] such that $\int_{[0,1]} f_n \to 0$, but the sequence does not converge.
- 10. Find the number of solutions of $f(z) = (z^6 + 2z 1) 5z^3 = 0$ interior to the unit circle.
- 11. (a) State Fatou's Lemma.
 - (b) State the Dominated Convergence Theorem, and use Fatou's Lemma to prove it.
- 12. Let f(z) be an entire function such that $|f(z)| \le 1 + |z|^{1996}$ for all complex numbers z. Prove that f(z) is a polynomial.

Section B Select one of the two parts

Part 1 Answer 2 of the three

- 1. Let μ denote Lebesgue measure on [0,1] and f a nonnegative integrable function on [0,1].
 - (a) Define the set function ν by $\nu(E) = \int_E f \, d\mu$ where E is a measurable subset of [0,1]. Show ν is a measure on [0,1].
 - (b) Show $\int_E g \, d\nu = \int_E g f \, d\mu$.
- 2. Let (X, M, μ) be a measure space and let $f: X \to \mathbb{R}$ be integrable. Prove Chebyshev's inequality: for every $\lambda > 0$

$$\mu\left(\left\{x\in X: |f(x)|>\lambda\right\}\right) \leq \lambda^{-1}\int_X |f|\,d\mu.$$

- 3. (a) Let f be a sunction such that all the indicated norms are defined. What are $||f||_p$, for $1 \le p \le \infty$.
 - (b) Discuss the containments amont the L^p , $(1 \le p \le \infty)$ spaces over a finite measure space. Justify your answer.
 - (c) Do part (b) for an infinite measure space.

Part 2 Answer 2 of 3

- 1. Find a conformal mapping of the upper half plane, Im z > 0, onto the disk |w| < R such that a given point α in the upper half plane is mapped to the center of the disk. Is your answer unique? Explain.
- 2. Find the function u(x,y) that is harmonic in the unit disk |z| < 1 and takes on the boundary values $u(\theta) = u(\cos\theta, \sin\theta) = \theta/2$ for $-\pi < \theta < \pi$.
- 3. Prove: if the radius of convergence of the series $f(z) = \sum a_n z^n$ is R, then f(z) has at least one singular point on the circle |z| = R.