Please put solutions to each problem on separate sheets.

Section A Answer 10 of the 12.

- 1. Let $A \subset \mathbb{R}^n$. Suppose every sequence in A has a subsequence converging to a point in A. Use the open covering definition of compactness to prove that A is compact.
- 2. Suppose $\{f_n\}$ and $\{g_n\}$ are sequence of real-valued functions defined on a set $E \subset \mathbb{R}$. Assume $\{f_n\}$ and $\{g_n\}$ converge uniformly to functions f and g, respectively. Discuss the convergence properties of the sequences $\{f_n \pm g_n\}$, $\{f_ng_n\}$, and $\{f_n/g_n\}$. Include proofs and counterexamples where necessary.
- 3. Let $F(x, y) = (e^x \cos y, e^x \sin y)$.
 - (a) Explain why the Inverse Function Theorem is applicable to F for all $(x,y) \in \mathbb{R}^2$.
 - (b) Is F one-to-one? Prove your answer.
 - (c) Does part (b) contradict part (a)? Prove your answer.
- 4. Let U be an open set in \mathbb{R}^2 whose boundary ∂A is a closed simple smooth curve. Suppose $u, v : V \to \mathbb{R}$ are twice continuously differentiable on V, V an open set containing $U \cup \partial U$. Show that

$$\int_{\partial U} \left[u \frac{\partial v}{\partial x} \, dx + u \frac{\partial v}{\partial y} \, dy \right] = \iint_{U} J(u, v) \, dx dy$$

where
$$J(u,v) = \det \left[egin{array}{cc} u_x & u_y \\ v_x & v_y \end{array}
ight]$$

- 5. Assume f and f' are in $L^1(\mathbb{R})$ and that f is absolutely continuous on each $[a,b] \subset \mathbb{R}$. Show that $f(x) \to 0$ as $x \to \infty$.
- 6. A set $E \subset \mathbb{R}$ has content zero if for all $\epsilon > 0$ there is a finite collection of intervals $\{I_j\}_{j=1}^n$ such that $E \subset \bigcup_{j=1}^n I_j$ and $m(\bigcup_{j=1}^n I_j) < \epsilon$.
 - (a) Prove that if E has content zero then E has measure zero.
 - (b) Suppose E has measure zero, does it necessarily follow that E has content zero? Prove or find a counterexample.
 - (c) Give a class of sets where content zero and measure zero coincide. Does this class of sets comprise a measure space? Prove your answer.
- 7. (a) Let $f: \mathbb{R} \to \mathbb{R}$. Show that the set of points of continuity of f is a \mathcal{G}_{δ} set.
 - (b) Is the set of rational numbers a \mathcal{G}_{δ} set? Prove your answer.
 - (c) Is there a function continuous at every rational point and discontinuous at every irrational point? Prove your answer.
- 8. In each assume Lebesgue measure on \mathbb{R} .
 - (a) Prove that $L^2([a,b]) \subset L^1([a,b])$.

- (b) Prove that $L^2([0,\infty)) \not\subset L^1([0,\infty))$ by giving an explicit example.
- 9. Suppose $\{f_n\}$ is a sequence of entire functions that converge uniformly to zero on \mathbb{C} . Prove that all but a finite number of the f_n are constants. Does this remain true if uniform convergence is replaced with pointwise convergence? Prove your_answer.
- 10. Show that $\int_{|z|=1} |z| dz = 0$. Does Morera's Theorem imply that |z| is analytic at z = 0? Explain.
- 11. Consider the function $f(z) = \frac{2z^2 1}{z^4 + 5z^2 + 4}$.
 - (a) Find the singularities of f and classify them.
 - (b) Calculate the residues of f at its singular points.
 - (c) Show that for large R, $|f(z)| \le \frac{2R^2 + 1}{(R^2 1)(R^2 4)}$.
 - (d) Show that the integral

$$\int_0^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx = \frac{1}{2} \int_{-\infty}^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx = \frac{\pi}{4}$$

by integrating around an appropriate closed curve depending on R and letting $R \to \infty$.

12. Let a > e. Show that the equation $e^z = az^n$ has n roots inside the unit circle. When n = 2, show that both roots are real.

Section B Select one of the two parts

Part 1 Answer 2 of the three

- 1. (a) What is meant by $L^p(\mu)$ where $1 \le p < \infty$ and μ is a σ -finite measure, so that (X, \mathcal{B}, μ) is a measure space.
 - (b) Suppose F is a bounded linear functional on $L^p(\mu)$, where $\mu(X) < \infty$. Define a function ν on \mathcal{B} by $\nu(E) = F(\chi_E)$. Show that ν is a signed measure absolutely continuous with respect to μ . Argue that there must therefore be an integrable function g so that $\nu(E) = \int_E g \, d\mu$.
 - (c) Show that $F(\phi) = \int \phi g \, d\mu$ for all simple functions and then argue that $F(f) = \int f g \, d\mu$ for all $f \in L^p(\mu)$.
 - (d) What can you say about g? (You needn't prove your statement.)
- 2. (a) What is meant by saying that a measure space (X, \mathcal{B}, μ) is complete.
 - (b) Given a measure space (X, \mathcal{B}, μ) , let

 $\mathcal{B}_0 = \{E : E = A \cup B, \text{ where } B \in \mathcal{B} \text{ and } A \text{ is a subset of some } C \in \mathcal{B} \text{ with } \mu(C) = 0\}.$

Show \mathcal{B}_0 is a σ -algebra which contains \mathcal{B} .

- (c) Define a measure μ_0 on \mathcal{B}_0 so that $\mu_0(E) = \mu(D)$ if $E \in \mathcal{B}$. Show that μ_0 is a measure and $(X, \mathcal{B}_0, \mu_0)$ is a complete measure space.
- 3. The convolution of $\phi * f$ of two functions ϕ and f defined on $\mathbb R$ is the function

$$(\phi * f)(x) = \int_{\mathbb{R}} \phi(y) f(x - y) dy.$$

If ϕ is a nonnegative continuous function with $\int_{\mathbb{R}} \phi(y) dy = 1$ and $f \in L^{\infty}(\mathbb{R})$, then show that

$$[(\phi * f)(x)]^2 \le (\phi * [f^2])(x)$$

for every $x \in \mathbb{R}$.

Part 2 Answer 2 of 3

- 1. (a) State the Riemann Mapping Theorem.
 - (b) Prove that the complex plane is only conformally equivalent to itself.
 - (c) Show that the only automorphism f of the unit disk with f(0) = 0, f'(0) > 0 is the identity map $f(z) \equiv z$.
- (a) Prove that a nonconstant harmonic function cannot attain a maximum or minimum in a domain.
 - (b) If u(z) = u(x, y) is harmonic in the plane with $u(z) \le |z|^n$ for every z, show that u(z) is a polynomial in the two variables x and y.
- 3. (a) Let $f(z) = \int_0^\infty t^3 e^{-zt} dt$ be analytic at all points z for which Re z > 0. Find a function F(z) which is the analytic continuation of f(z) into the half plane Re z < 0.
 - (b) Prove that a function is meromorphic if and only if it can be expressed as a quotient of entire functions.