Ph. D. Qualifying Examination in Analysis

August 24, 2007

Part 1. Do (only) four of the five problems.

- 1. (a) Define a measurable set.
 - (b) Show that if E is a measurable set, then each translate E + y of E is also measurable.
- 2. (a) Let f be a nonnegative measurable function. Show that $\int f = 0$ implies f = 0 a.e.
 - (b) Let $\{f_n\}$ be a sequence of nonnegative measurable functions that converge to f, and suppose $f_n \leq f$ for each n. Prove

 $\int f = \lim \int f_n ,$

and identify any theorems you might use.

- 3. (a) Is the function $f(t) = t^{-2/3}$ integrable in the Riemann sense over the interval [0,1]? Give a reason for your answer.
 - (b) Is the function $f(t) = t^{-2/3}$ Lebesgue integrable on the closed interval [0,1]? Prove your answer, indicating any convergence theorem you are using.
 - (c) Is the function $g(t) = t^{1/3}$ absolutely continuous on the closed interval [0, 1]? Justify your answer.
- 4. (a) Suppose f is integrable on [a,b]. Show that the function $F(x) = \int_a^x f(t) dt$ is a continuous function of bounded variation on [a,b].
 - (b) What is known about the differentiability of F? Explain.
 - (c) Suppose f is bounded and measurable on [a,b] and $F(x) = \int_a^x f(t) dt + F(a)$. For

$$f_n(x) = \frac{F(x+1/n) - F(x)}{1/n}$$

show

$$\int_{a}^{c} F'(x) dx = \lim_{n \to \infty} \int_{a}^{c} f_n(x) dx = \int_{a}^{c} f(x) dx$$

for all c in the closed interval [a,b].

- 5. (a) Indicate the definition and basic properties of $L^p[0,1]$.
 - (b) Suppose F is a bounded linear functional on L^p . What does that mean?
 - (c) Given a bounded measurable function f on the closed interval [0,1] is it true or false that there exists a bounded sequence of step functions which converge almost everywhere to f? Prove your answer.
 - (d) Suppose that there is an integrable function g on [0,1] such that $F(\psi) = \int_0^1 g \psi$ for each step function ψ on [0,1]. Prove that

$$F(f) = \int_0^1 gf$$

for each bounded measurable function f on [0,1].

Part 2. Do (only) four of the five problems.

- 1. Let $f(z) = 2z^6 + z^4 2z^3 + 8z^2 e^z$.
 - (a) How many zeros does f(z) have in the region |z| < 1? Justify your answer.
 - (b) How many zeros does f(z) have in the region $1 \le |z| < |2|$? Justify your answer.
- 2. Suppose f is an entire function with f(0) = 1 and $|f(z)| \le Ae^x$ for all $z = x + iy \in \mathbb{C}$ and some positive constant A. *Prove*: $f(z) = e^z$ for all z.
- 3. Expand the function $\frac{2z-7}{z^2-7z+10}$ in a Laurent series in the region
 - (a) 2 < |z| < 5.
 - (b) |z| > 5.
- 4. Let γ be the rectangle with vertices $-R, R, R+i\pi, -R+i\pi$. Consider the integral of $e^{az}/\cosh z$ around γ . Prove: If |a| < 1, then

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{\cosh x} dx = \frac{\pi}{\cos(\pi a/2)}.$$

5. It is desired to approximate 1/z on the circle |z|=1 by a polynomial p(z). Prove that the maximum error is at least 1; that is,

$$\max_{|z|=1} \left| \frac{1}{z} - p(z) \right| \ge 1.$$

Hint: Integrate 1/z - p(z) around the circle |z| = 1.

Part 3. Do (only) two of the three problems.

- 1. (a) Let \mathcal{F} be a family of real-valued functions defined on a Banach space X and suppose that for each $x \in X$, there is a real number M_x such that $|f(x)| \leq M_x$ for all $f \in \mathcal{F}$.
 - i. For each positive integer m and $f \in \mathcal{F}$, let

$$E_{m,f} = \{x : |f(x)| \le m\}$$
 and $E_m = \bigcap_{f \in \mathcal{F}} E_{m,f}$.

Argue that each E_m is closed.

- ii. Show that $X = \bigcup_{m \in \mathbb{N}} E_m$.
- iii. Argue that there must exist some open set G in X and some positive integer m such that $|f(x)| \le m$ for all $f \in \mathcal{F}$. (You may state a pertinent theorem.)
- (b) Suppose \mathcal{F} is a family of bounded linear operators from a Banach space X to a normed linear space Y such that for each $x \in X$, there exists $M_X > 0$ such that $||Tx|| \le M_X$ for all $T \in \mathcal{F}$.
 - i. Argue that there exists an open set G and a constant K such that $||Tx|| \le K$ for all $x \in G$.

- ii. Show that there is a constant M so that $||T|| \le M$ for all $T \in \mathcal{F}$.
- (c) What theorem is being proved above?
- (d) If $\{f_n\}$ is a sequence of linear functionals on a Banach space X such that $\{f_n(x)\}$ is bounded for each $x \in X$, can you conclude that $\{||f_n||\}$ is bounded?
- (e) Answer the same question for a sequence $\{x_n\}$ in a Banach space X for which $\{f(x_n)\}$ is bounded for each $f \in X^*$.
- 2. Let $X = \{a, b, c\}$, $\Sigma = \{\emptyset, X, \{a, b\}, \{c\}\}$, and define μ by $\mu(X) = 1, \mu(\emptyset) = \mu(\{a, b\}) = 0, \mu(\{c\}) = 1$. Let f be identically 1 on X, and let g be defined by g(a) = 0, g(b) = g(c) = 1.
 - (a) Does (X, Σ, μ) define a measure space?
 - (b) Is the function f measurable?
 - (c) Does f = g a.e.?
 - (d) Is g measurable?
 - (e) Is the following statement true in general: If f is measurable on (X, Σ, μ) and f = g a.e., then g is measurable?
 - (f) If the statement in the previous part is true, prove it. If it is false, make it into a true statement and prove it.
- 3. (a) Define each of the following.
 - i. An outer measure on a set X.
 - ii. A measurable set with respect to an outer measure.
 - iii. An algebra of sets and a σ -algebra of sets.
 - iv. A measure on an algebra.
 - v. The measure induced by an outer measure.
 - vi. A semi-algebra of sets.
 - (b) Given complete measure spaces $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$, explain how to define the product measure $\mu \times \nu$ on the product space $X \times Y$.
 - (c) Prove the following statement which is needed in the development of part (b). Let $\{(A_j \times B_j)\}$ be a countable disjoint collection of measurable rectangles whose union is a measurable rectangle $A \times B$. Then

$$\mu(A)\nu(B) = \sum_{j=1}^{\infty} \mu(A_j)\nu(B_j).$$