Analysis Qualifying Exam

August 29, 2008

Part 1: MTH 632: Introduction to Real Analysis

Provided complete solutions of 4 of the 5.

- 1. Let $E \subset \mathbb{R}$ be Lebesgue measurable. Show $E = G \cup Z$ where G is a \mathcal{G}_{δ} set and Z is a set of measure zero. Does the converse hold, i.e., if a set $E = G \cup Z$, G a \mathcal{G}_{δ} , and m(Z) = 0, is E measurable?
- 2. Let f be a Lebesgue integrable function on \mathbb{R} . Let $\langle E_n \rangle$ be a sequence of measurable sets such that $\lim_{n \to \infty} m(E_n) = 0$. Show that $\lim_{n \to \infty} \int_{E_n} f = 0$.
- 3. Let f be a Lebesgue measurable function defined on [0,1]. Suppose $0 \le f(x) \le 1$ and $\int_{[0,1]} f \, dm = 1$. Show that f = 1 a.e.
- 4. Let $\langle f_n \rangle$ be a sequence of measurable functions defined of [0,1] and f a measurable function. Assume that, for any $\epsilon > 0$ there exists measurable $E_{\epsilon} \subset [0,1]$ such that $m([0,1] \sim E_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on E_{ϵ} . Show that $f_n \to f$ a.e.
- 5. For f a measurable function on [0,1] let $E_n = \{x \in [0,1] : n-1 \le |f(x)| < n\}$.
 - (a) Show $f \in L^1[0,1]$ if and only if $\sum_{n=1}^{\infty} n \, m(E_n) < \infty$.
 - (b) What can be said about $f \in L^p[0,1]$, $1 \le p < \infty$ and the sets $\langle E_n \rangle$? Prove your answer.

Part 2: MTH 636: Introduction to Complex Variables

Provide complete solutions to $\underline{5}$ of the 6 problems.

- 1. (a) Find the set of points at which the function $h(z) = x^3 + 3xy^2 3x + i(y^3 + 3x^2y 3y)$ is differentiable. What is the set of points at which h is analytic? Justify your answers.
 - (b) Give an example of a non constant analytic function w=f(z) that maps the half plane $\mathbb{H}=\{z\in\mathbb{C}: \text{Re }z>1\}$ onto the interval (0,1) in the x-axis. Prove your answer.
- 2. Let f be analytic on an open set $\mathcal{O}\subsetneq\mathbb{C}$; and let $a\in\mathcal{O}$. Suppose there are an r>0 and a sequence $\{a_k\}$ such that $\{z\in\mathbb{C}:|a-z|< r\}\subseteq\mathcal{O}$ and $f(z)=\sum_{k=0}^\infty a_k(z-a)^k$ converges for all z satisfying |z-a|< r. Let $z\in\mathbb{C}$ satisfy $|z-a|<\delta:=\mathrm{dist}(z,\mathbb{C}\setminus\mathcal{O}):=\inf_{w\in\mathbb{C}\setminus\mathcal{O}}|a-w|$. Choose η such that $|z-a|<\eta<\delta$.
 - (a) Express a_k in terms of f and the circle $|\zeta a| = \eta$.
 - (b) Show that the series $\sum_{k=0}^{\infty} \frac{(z-a)^k}{(\zeta-a)^{k+1}} f(\zeta)$ converges uniformly and absolutely on the circle $|\zeta-a|=\eta$.
 - (c) Use parts (a) and (b) to prove that the series $\sum_{k=0}^{\infty} a_k (z-a)^k$ converges for all z satisfying $|z-a| < \delta$ and its sum is f(z).
- 3. (a) If $\sum_{k=0}^{\infty} a_k z^k$ converges for some $z_0 \neq 0$ and if $r \in (0, |z_0|)$, then $\sum_{k=0}^{\infty} a_k z^k$ converges uniformly and absolutely for all z satisfying $|z| \leq r$.
 - (b) Suppose f is an analytic function on $\{z\in\mathbb{C}:|z|>1\}$ and $\lim_{z\to\infty}f(z)=0$. If γ is the positively oriented circle of radius 2 centered at 0 and $|z_0|>2$, find $\int_{\gamma}\frac{f(z)}{z-z_0}\,dz$. (*Hint*: Join *large* circles centered at 0 of radius $R>|z_0|$ with the circle of radius 2 by radial segments.)
- 4. If f is analytic on $\mathbb{C} \setminus \{0\}$ and if $|f(z)| \leq 1$ for all $z \neq 0$, what can be said about f? Prove your answer.
- 5. (a) Compute $\int_{|z-1|=2} \left(z \left[\exp\left(\frac{2}{z^2}\right) 1 \right] + \frac{\sin^2 z}{z^2 (2z \pi)^2} \right) dz$ (where |z-1|=2 is the positively oriented circle of radius 2 centered at 1).
 - (b) Evaluate $\int_0^\infty \frac{x^2 dx}{(x^2 + 2x + 2)^2}.$

- 6. (a) Find the number of solutions of $2z^5-7z^2-z=1-z^4$ in the annulus $\{z\in\mathbb{C}:1<|z|<2\}\,.$
 - (b) If f is an entire function that satisfies $|f(z)| \le 100|z|^2$ for all z satisfying |z| > 100, then f must have a simple form. What is it? Prove your answer.

Part 3: MTH 637: Complex Variable Theory

- 1. (a) Give an example of a planar region G and a harmonic function $u: G \to \mathbb{R}$ such that u does not have a harmonic conjugate.
 - (b) Show that if $u: \mathbb{R}^2 \to \mathbb{R}$ is a non-constant harmonic function, then u is onto.
- 2. Show that there is an analytic function on the open unit disk \mathbb{D} which is not analytic on any region containing \mathbb{D} .
- 3. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a non-polynomial analytic function on a region G, and let S_n be the nth partial sum. Show that for every n there exists $z_n \in G$ such that $|S_n(z_n)| > |f(z_n)|$.
- 4. Let f be an entire function such that the equations f(z) = 0 and f(z) = 1 each have finitely many solutions. Show that f is a polynomial.