Analysis Qualifying Exam August 19, 2014

MTH 636: Provide complete solutions to only five of the six problems.

- 1. Each of the following functions has a singularity at z=0. Determine whether the singularity is an essential singularity, a pole, or a removable singularity. If the singularity is a pole, determine the order of the pole. Justify your answers.
 - (a) $\frac{z \sin z}{z^3}$
 - (b) $\frac{(z+z^{-1})^2}{z}$
- 2. Find the Laurent expansion of the function

$$f(z) = \frac{2z+1}{z^2 + z - 6}$$

- (a) in the annulus 2 < |z| < 3, and
- (b) in the region |z| > 3.
- 3. (a) Prove that all of the roots of $z^5 z^4 + z^2 z + 6$ lie in the annulus $1 \le |z| \le 2$.
 - (b) Suppose a polynomial p(z) has a zero at z_0 . What is the residue of $\frac{p'}{p}(z)$ at z_0 ?
 - (c) Compute

$$\frac{1}{2\pi i} \oint_{|z|=2} \frac{5z^4 - 4z^3 + 2z - 1}{z^5 - z^4 + z^2 - z + 6} dz.$$

- 4. Suppose that f is an entire function with the property there is some real number α such that if z = x + iy is an arbitrary complex number, then $|f(z)| \le e^{\alpha x}$. Prove that $f(z) = \lambda e^{\alpha z}$ for some $\lambda \in \mathbb{C}$.
- 5. Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2 + \pi^2} dx.$$

6. Suppose that a is a real number with |a| > 1. Prove:

$$\int_0^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2} = \frac{2\pi}{a^2 - 1}.$$

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Let D be a bounded set in \mathbb{R} , with the property that for any interval I,

$$m^*(D \cap I) \le \frac{1}{2} \text{length}(I),$$

where m^* denotes the exterior or outer Lebesgue measure. Show that D is measurable and has measure zero.

- 2. (a) State Fatou's Lemma and the Monotone Convergence Theorem.
 - (b) Use Fatou's Lemma to prove the Monotone Covergence Theorem.
- 3. Let f be a measurable function on a bounded interval J, which is finite a.e. on J. Given any $\epsilon > 0$, show that there exists a constant M such that |f(x)| < M for all $x \in J$ outside of some set of measure $< \epsilon$.
- 4. Let $f_k \to f$ a.e. on \mathbb{R} . Show that given $\epsilon > 0$, there exists a set E of measure less than ϵ , so that $f_k \to f$ uniformly on $I \setminus E$, for any finite interval I.
- 5. Compute the following limit and justify your calculation:

$$\lim_{n \to \infty} \int_0^\infty \frac{x^{n-2}}{1+x^n} \cos(\pi nx) \, dx$$

- 6. Let $1 \le r .$
 - (a) Show that $L^r(\mathbb{R}) \cap L^s(\mathbb{R}) \subset L^p(\mathbb{R})$.
 - (b) Show that $L^{s}([0,1]) \subset L^{r}([0,1])$.
 - (c) Is it true that $L^s(\mathbb{R}) \subset L^r(\mathbb{R})$? Justify your answer.