Analysis Qualifying Exam

January 13, 1996, 8:00-12:00

Section A Answer 10 of the 12.

- 1. (a) State what it means for $f:[a,b]\to\mathbb{R}$ to be uniformly continuous on [a,b].
 - (b) State what it means for $f:[a,b]\to\mathbb{R}$ to be Riemann integrable on [a,b].
 - (c) Show if f is uniformly continuous on [a, b], then it is Riemann integrable.
- 2. Let $f_n(x) = \frac{x}{n}e^{-x/n}$ for $x \ge 0$.
 - (a) Prove $f_n \to 0$ pointwise for $x \ge 0$.
 - (b) Is the convergence in (a) uniform? Prove your answer.
 - (c) Where does $f_n \to 0$ uniformly? Prove your answer.
- 3. Let $f(x,y) = (xy x + 1, x^2y + 2y 2)$ for all $(x,y) \in \mathbb{R}^2$.
 - (a) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$f(1+h, 1+k) - f(1,1) = T(h,k) + \epsilon(h,k),$$

where $\epsilon(h, k) / \| (h, k) \| \to (0, 0)$ and $(h, k) \to (0, 0)$.

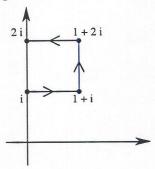
- (b) Find a linear transformation S that approximates f^{-1} the way T approximates f in part (a).
- 4. By integrating the function $f(z) = z^{-1}$ over a suitably parameterized ellipse γ and a suitable circle $\bar{\gamma}$, prove that

$$\int_0^{2\pi} \frac{1}{a^2 \cos^2 t + b^2 \sin^2 t} dt = \frac{2\pi}{ab} \quad (a > 0, \ b > 0).$$

- 5. Suppose that f is a real-valued function defined on [0,1], satisfying $|f(x_1) f(x_2)| \le M|x_1 x_2|^{\alpha}$ for all $x_1, x_2 \in [0,1]$. Here M > 0 and $\alpha > 0$.
 - (a) Show if $0 < \alpha \le 1$ then f is absolutely continuous.
 - (b) Show if $\alpha > 1$ then f is constant.
- 6. Let AC denote the space of absolutely continuous functions on [0,1], and BV denote the space of functions of bounded variation on [0,1]. Does one space contain the other? Prove your answer. If containment exists, is it proper? Prove your answer.
- 7. Let f be absolutely continuous on [a,b] and $E \subset [a,b]$ be measurable. Show f(E) is measurable.
- 8. Let $f:[0,1]\to\mathbb{R}$ be continous and let $M=\sup_{x\in[0,1]}|f(x)|$. Show that

$$M = \lim_{p \to \infty} \left(\int_0^1 |f(x)|^p dx \right)^{1/p}.$$

9. (a) Use the definition of a complex integral to evaluate $\int_C z^2 dz$ if C is the curve from i to 2i on the right side.



- (b) Is the integral in part (a) independent of the path? If so calculate it in another way than you did in part (a). Justify your answers.
- 10. Prove that if f(z) is an entire function and $M(\rho) = \max\{|f(z)| : |z| = \rho\}$, is such that $M(\rho) \leq L \rho^k$, then f(z) is a polynomial of degree at most k.
- 11. Let f be entire and suppose that $\operatorname{Re} f(z) \leq \operatorname{Im} f(z)$ for all $z \in \mathbb{C}$. Prove that f is constant.
- 12. (a) State Rouche's Theorem.
 - (b) Let $p(z) = z^5 + 6z^3 + 2z + 10$. Show that all five zeros of p(z) lie in the set $\{z : 1 < |z| < 3\}$.

Section B Select one of the two parts

Part 1 Answer 2 of the 3

- 1. Let $\mu << m$, where m is Lebesgue measure on \mathbb{R} . Define $F(x) = \mu(-\infty, x]$. Show that F is absolutely continuous.
- 2. Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be finite measure spaces. Discuss the development of a product measure $\mu_1 \times \mu_2$ on $\Sigma_1 \times \Sigma_2$ and state Fubini's Theorem.
- 3. Let (X,\mathcal{M}) be a measure space, and let μ , ν be two positive measures on \mathcal{M} such that $\mu(X) + \nu(X) < \infty$. Assume $\mu << \nu$ and let g be the Radon-Nikodym derivative of μ with respect to ν . Show that $L^p(\nu) \subset L^1(\mu)$ if and only if $g \in L^q(\nu)$, $\frac{1}{p} + \frac{1}{q} = 1$.

Part 2 Answer 2 of the 3

- 1. Suppose $\langle u_n(z) \rangle$ is a sequence of harmonic functions that converges uniformly on all compact subsets of a domain \mathcal{D} to a function u(z). Then prove that u(z) is harmonic throughout \mathcal{D} .
- 2. Given a set of real numbers $0 \le \theta_1 < \theta_2 < \cdots < \theta_n < 2\pi$ construct a function f(z) satisfying (i) f(z) is analytic in |z| < 1 and (ii) the only singular points of f(z) on the unit circle are at $e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n}$. Prove these assertions for your choice of f(z).
- 3. Prove the Weierstrass' Theorem: Given any complex sequence having no finite limit point, there exists an entire function that has zeros at these points and only these points.