Section A. Do both parts.

Part 1 Do (only) five of the six problems.

- 1. Describe the development of Lebesgue measure and the Lebesgue integral, starting with definition of outer measure and concluding with the important convergence theorems. State carefully the pertinent definitions and theorems.
- 2. (a) Give an example of a function that is not Lebesgue integrable on [0,1] and justify your answer.
 - (b) Give an example of a Lebesgue integrable function on $[1, \infty)$ and prove it using one of the convergence theorems.
- 3. Suppose f is Lebesgue measurable on \mathbb{R} . Is it true that there must exist a sequence $\{E_n\}$ of subsets of \mathbb{R} whose union is \mathbb{R} such that each E_n has finite measure and f is bounded on each E_n ? Give a proof if true and counterexample if not.
- 4. Let

$$f(x) = \begin{cases} 2\sqrt{x}, & \text{if } 0 \le x \le 1/4; \\ -2x + 3/2, & \text{if } 1/4 < x \le 1. \end{cases}$$

- (a) Is the function f absolutely continuous on [0,1]? How do you know?
- (b) Is f of bounded variation on [0,1]? How do you know?
- (c) If the answer in b) is yes, find the total variation of f on [0,1].
- 5. (a) Define what is meant by $L^p[0,1], 1 \le p < \infty$.
 - (b) What does the Minkowski inequality for L^p say?
 - (c) Given $\frac{1}{p} + \frac{1}{q} = 1$ and $g \in L^q$, define F on $L^p[0,1]$ by

$$F(f) = \int_0^1 fg.$$

What can you say about the function F?

- 6. For each positive integer n let $f_n(x) = \sum_{k=1}^n \frac{1}{k} \sin kx$ for $x \in [0, 2\pi]$.
 - (a) Is it true that $f_n \in L^2[0, 2\pi]$ for each n?
 - (b) Is the sequence $\{f_n\}$ a Cauchy sequence in $[0,2\pi]$? Justify your answer.
 - (c) If the answer in b) is yes, is there a function f in $L^2[0,2\pi]$ so that $f(x) = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx$ a.e.? What theorem would tell you this?

Part 2 Do (only) five of the six problems.

- 1. (a) Show that $h(z) = x^3 + 3xy^2 3x + i(y^3 + 3x^2y 3y)$ is differentiable on the coordinate axes but is nowhere analytic.
 - (b) Show that if the anaytic function w = f(z) maps a domain D onto a portion of a line, then f must be constant throughout D.
- 2. (a) Prove that there exists no function F(z) analytic in the annulus D:1<|z|<2 such that $F'(z)=\frac{1}{z}$ for all z in D.
 - (b) Define a branch of $(z^2 1)^{1/2}$ that is analytic in the exterior of the unit circle, |z| > 1.
- 3. Compute $\int_C \frac{z+i}{z^3+2z^2} dz$ where C is
 - (a) the circle |z| = 1 traversed once counterclockwise;
 - (b) the circle |z + 2 i| = 2 traversed once counterclockwise.
- 4. For each of the following, construct a function f analytic in the plane except for isolated singularities that satisfies the given conditions and justify your answer.
 - (a) f has a zero of order 2 at z = i and a pole of order 5 at z = 2 3i;
 - (b) f has a simple zero at z = 0 and an essential singularity at z = 1;
 - (c) f has a removable singularity at z = 0, a pole of order 6 at z = 1, and an essential singularity at z = i.

5. Compute

$$\oint_{|z|=5} \left[ze^{3/z} + \frac{\cos z}{z^2(z-\pi)^3} \right] dz$$

using the Cauchy residue theorem.

- 6. (a) State Rouche's Theorem.
 - (b) Using Rouche's Theorem prove that every polynomial of degree n has n zeros.

Section B Do (only) two of the three problems.

- 1. (a) Let (X, ρ) be a metric space; $E \subseteq X$; and let $f: E \to \mathbb{R}$ be a uniformly continuous function. Show that there is a unique extension of f to a uniformly continuous function g from the closure \overline{E} of E to \mathbb{R} .
 - (b) If we assume merely the continuity of f above, can we still conclude that there is a continuous extension? Explain your answer.
- 2. Let X be a normed linear space.
 - (a) Let $x \in X$. Show that there is a bounded linear functional f on X such that $f(x) = ||f|| \, ||x||$.
 - (b) Explain the difference between the weak topology and the weak* topology on the dual X^* of X.
 - (c) Give an example each of a typical basic open set containing $0 \in X^*$ in the weak topology and the weak* topology on X^* .
- 3. (a) Let (X, \mathcal{B}, μ) be a measure space, and ν is a measure on (X, \mathcal{B}) . Under what conditions can we conclude that there is a measurable function f such that $\nu E = \int_E f \ d\mu$ for all $E \in \mathcal{B}$?

(b) Let $X = [0,1] \cup \{\infty\}$; \mathcal{B} be the σ -algebra of sets $E \subseteq X$ such that $E \sim \{\infty\}$ is a Lebesgue measurable subset of [0,1]; and let m be the Lebesgue measure restricted to [0,1]. Define μ and ν on (X,\mathcal{B}) by

$$\mu E = \begin{cases} mE & \text{if } \infty \notin E \\ \infty & \text{if } \infty \in E \end{cases},$$

and $\nu E = m (E \sim {\infty})$. Discuss the mutual singularity and absolute continuity between μ and ν .

- (c) Discuss the existence of a function as in part (a) that works for either μ with respect to ν or the other way. Explain your conclusions.
- (d) Discuss the existence of a Lebesgue decomposition of one measure with respect to the other. Explain your conclusions.