Analysis Qualifying Exam

January 18, 2002 Central Michigan University

Section A. Do both parts.

Part 1. Do (only) five of the six problems.

1. Let $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \sim \mathbb{Q} \end{cases}$ be the characteristic function of the set of rational numbers \mathbb{Q} and let

 $\mathcal{F} = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is differentiable at exactly three points} \}$

be the collection of real-valued functions on \mathbb{R} that are differentiable at exactly three points.

- (a) Prove that $x^2\chi_{\mathbb{Q}}$ is differentiable at $x=a \Leftrightarrow a=0$.
- (b) Give an explicit definition of a specific function belonging to \mathcal{F} .
- (c) Determine the cardinality of \mathcal{F} .
- 2. Let λ^* denote Lebesgue outer measure on \mathbb{R} . Do not use the fact that λ^* is countably subadditive unless you prove it.
 - (a) Prove: $\lambda^*(\mathbb{Q}) = 0$.
 - (b) Prove: If $\lambda^*(Z) = 0$, then there exists a \mathcal{G}_{δ} set H such that $Z \subseteq H$ and $\lambda^*(H) = 0$.
 - (c) Give a brief justification of the following. (You may quote any of the standard versions of the Baire category theorem without proof.) There exist sets F and Z such that F is first category in \mathbb{R} , $\lambda^*(Z) = 0$, and $\mathbb{R} = F \cup Z$.
- 3. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be such that f is unbounded on every set of positive measure. Using Lusin's theorem, or another method of your choice, prove that f is a non-measurable function.
 - (b) Show that the converse of the statement in (a) is false.
- 4. Let $f:[0, 1] \to \mathbb{R}$ be measurable with $f \ge 0$ and, for each $n \in \mathbb{N}$, let $E_n = \{x \in [0, 1] : n 1 \le f(x) < n\}$. Prove that

$$f \in \mathcal{L}^{1}[0, 1] \iff \sum_{n=1}^{\infty} [n \cdot \lambda(E_{n})] < \infty,$$

where λ is Lebesgue measure on \mathbb{R} .

- 5. Let $f:[0, 1] \to \mathbb{R}$ be absolutely continuous on [0, 1] and, for each $E \subseteq [0, 1]$, let $f[E] = \{f(x) : x \in E\}$ be the image of E under f.
 - (a) Prove: If $Z \subseteq [0, 1]$ has measure zero, then f[Z] has measure zero.
 - (b) Prove: If $Z \subseteq [0, 1]$ is measurable, then f[Z] is measurable.
 - (c) For each of the following four classes of functions defined on [0, 1], state whether (a) or (b) (or both) is true for that class. (You do not have to justify your answers.)
 - (i) continuous

- (iii) bounded variation
- (ii) Lipschitz continuous
- (iv) continuous and bounded variation
- 6. Prove TWO of the following. You may use basic properties of integration and quote standard theorems without proof.
 - (a) $\int_0^1 \chi_E$ exists as a Riemann integral, where χ_E is the characteristic function of E and E is any subset of a closed measure zero set.
 - (b) $\int_0^1 f$ does not exist as a Riemann integral for some function f that is a pointwise limit of step functions on [0, 1].
 - (c) $\int_0^1 \left[\frac{1}{x} \sin \left(\frac{1}{x} \right) \right] dx$ exists and is finite as an improper Riemann integral, but not as a Riemann integral or as a Lebesgue integral.
- Part 2. Do (only) five of the six problems.
 - 1. (a) State the Cauchy–Riemann equations for a complex function f(z) = u(x, y) + iv(x, y).
 - (b) Consider the function

$$f(z) = \begin{cases} \frac{\overline{(z)}^2}{z}, & \text{when } z \neq 0; \\ 0, & \text{when } z = 0. \end{cases}$$

Does this function satisfy the Cauchy–Riemann equations at the origin z = (0, 0)?

(c) Does the function in part (b) have a derivative at (0, 0)? Does your answer contradict a theorem relating differentiability and the Cauchy–Riemann equations? Explain.

- 2. (a) What do we mean by saying a function is analytic at a point? On a domain?
 - (b) Explain what is meant by a branch cut for a complex function f.
 - (c) Determine a branch cut and therefore a domain of analyticity for the function $f(z) = \log(3z i)$. Compute f'(z).
- 3. (a) What is meant by a contour?
 - (b) Evaluate the integral $\int_{\Gamma} \frac{dz}{2z-1}$, where Γ is the circle of radius one centered at $z=\frac{1}{2}$, oriented positively. Use a parametrization of Γ and evaluate the integral directly.
 - (c) Evaluate the integral of the same function as in part (b), but around the circle |z| = 1. You may use any pertinent theorems.
- 4. (a) Discuss what you know about the relationship between analyticity of a function and its expansion as a power series.
 - (b) Suppose f is continuous in a bounded open disk D and on its boundary. Suppose further that $\int_{\Gamma} f(z) = 0$ for every closed contour Γ inside D. Must f be expandable in a Taylor series around each point of D? Justify your answer.
 - (c) Suppose for the function in part (b) it is known that |f(z) 1| < 1 for all z on the boundary of D. Prove that f has no zero in D.
- 5. (a) Find the Laurent series expansion for $f(z) = \frac{1}{z+z^2}$ in the domain 0 < |z+1| < 1.
 - (b) State the Cauchy Residue Theorem and use it to evaluate the following integral:

$$\int_{|z|=3} \frac{e^z}{z \left(z-2\right)^3} \, dz$$

6. Show that if f is a continuous function from the complex numbers into the complex numbers which is analytic off the interval [-1, 1], then f is an entire function.

Section B. Do (only) two of the three problems.

- 1. (a) Write the simplest entire function with a zero of order 5 at 0 and simple zeros at odd positive integers as an infinite product. Explain your answer, including why the product converges.
 - (b) Show that $\prod_{n=1}^{\infty} (1+z_n)$ converges absolutely iff $\prod_{n=1}^{\infty} (1+|z_n|)$ converges.
- 2. (a) What does Runge's theorem say?
 - (b) Let K be a compact subset of an open set $G \subseteq \mathbb{C}$ and let $E \subseteq \mathbb{C} G$. Suppose R is a rational function with a simple pole at $a \in \overline{E}$. Show that for each $\epsilon > 0$ there is a rational function R_1 with a simple pole in E such that $|R(z) R_1(z)| < \epsilon$ for all $z \in K$. Can you extend this to more than one pole? Explain.
- 3. (a) Let G be a region in \mathbb{C} and let $u: G \to \mathbb{R}$ be a continuous function which has the mean value property. Prove that u is harmonic on G.
 - (b) Prove that a non-constant harmonic function on a region is an open map.