Analysis Qualifying Exam

January 4, 1997, 8:00-12:00

Section A Answer 10 of the 12.

1. Consider the sequence of functions $\{f_n(x)\}\$ defined by

$$f_n(x) = \frac{2nx}{1 + n^2 + x^2}.$$

- (a) Determine with proof the pointwise limit, f(x), of $\{f_n(x)\}$ and whether this convergence is uniform on [-1,1].
- (b) Define $F_n = \int_{-1}^1 f_n(t) dt$. Does $\lim_{n \to \infty} F_n = \int_{-1}^1 f(t) dt$? If your answer is yes, is it necessary that the convergence of $\{f_n(x)\}$ be uniform? Provide proof, citing the appropriate theorems.
- 2. Suppose the function f is defined at (x_0, y_0) and both $\partial f/\partial x$ and $\partial f/\partial y$ exist at (x_0, y_0) . Show that

$$\lim_{x \to x_0} f(x, y_0) = \lim_{x \to y_0} f(x_0, y) = f(x_0, y_0).$$

Does this imply that f is continuous at (x_0, y_0) ? Provide proof of your answer.

- 3. Let V be an open subset of \mathbb{R}^2 containing $\vec{\mathbf{u}}_0 = (x_0, y_0)$. Suppose $F: V \to \mathbb{R}^2$ is continuously differentiable with a nonzero Jacobian, $J_F(x,y)$ on V. Let $B_r = \{\vec{\mathbf{u}} \in \mathbb{R}^2 : ||\vec{\mathbf{u}} \vec{\mathbf{u}}_0||_2 \le r\}$, where r > 0 is sufficiently small so that $B_r \subset V$.
 - (a) Prove that

$$\lim_{r \to 0} \frac{A(F(B_r))}{\pi r^2} = |J_F(x_0, y_0)|.$$

Here $A(F(B_r))$ is the area of the region $F(B_r)$.

- (b) Verify part (a) for $V=\{\vec{\mathbf{u}}\in\mathbb{R}^2: \|\vec{\mathbf{u}}\|_2<2\}$, $F(x,y)=(4x+y,-x^2+y)$, and $\vec{\mathbf{u}}_0=(0,0)$. (Hint: If R is a simply connected region in \mathbb{R}^2 with a smooth boundary C oriented positively, use Green's Theorem to show $A(R)=\frac{1}{2}\oint_C x\,dy-y\,dx$).
- 4. Let f(x) be continuous and bounded on $[1, \infty)$ and suppose that

$$\int_1^\infty f(x)x^n dx = 0 \text{ for } n = -2, -3, \dots$$

Does it follow that $f(x) \equiv 0$? Justify your answer. (Hint: x = 1/u.)

- 5. A sequence $f_n \in L^2[a,b]$ is said to converge weakly to f if and only if $\int f_n g \to \int f g$ for all $g \in L^2[a,b]$. Prove:
 - (a) If $f_n \to f$ in norm in $L^2[a, b]$, then $f_n \to f$ weakly.
 - (b) If $f_n \to f$ weakly, $f \in L^2[a, b]$, and $||f_n||_2 \to ||f||_2$, then $f_n \to f$ in the norm of $L^2[a, b]$.
 - (c) The converse of (a) may fail.
- 6. (a) Suppose $f \in L^1[a, b]$. Show that the function F defined by $F(x) = \int_a^x f(t) dt$ is continuous and of bounded variation on [a, b].

- (b) Given $F(x) = x^{3/4}$ on [0, 1], decide whether F is absolutely continuous on [0, 1]. Give a proof or a counterexample. You may quote related theorems.
- 7. Let $E \subset \mathbb{R}$ be a Borel set.
 - (a) Show $m(E) = \inf\{m(U) : E \subset U, U \text{ open}\}$. Here m is Lebesgue measure on \mathbb{R} .
 - (b) Show there exists a sequence of open sets $\{U_n\}_{n=1}^{\infty}$ such that $U_n \supset U_{n+1}$ and $\lim_{n\to\infty} m(U_n) = m(E)$.
- 8. Suppose f is a measurable function on [0, 1].
 - (a) Must |f| be measurable? Give a proof or a counterexample.
 - (b) If $\int_0^1 |f| = 0$, must f = 0 a.e.? Give a proof or a counterexample.
- 9. (a) Define what is meant by saying that f is analytic at a point a in a domain G? Is this the same as saying F is differentiable at a?
 - (b) State the Cauchy-Riemann equations as they apply to f(z) = u(x, y) + i v(x, y), where z = x + i y.
 - (c) Find all z at which $f(z) = x^3y + 3xy^2 3x + i(y^3 + 3x^2y 3y)$ is differentiable. For which z is f analytic?
- 10. State the definitions of all the different kinds of singularities for a complex-valued function on a region. Give an example of each kind.
- 11. Use the Cauchy Integral Formula for circular paths to prove that f is analytic in a disk of radius R centered at z = a, then $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R.
- 12. Find the Laurent series of $\frac{1}{(z-1)(z+2)}$.
 - (a) for 1 < |z| < 2,
 - (b) for |z| > 2.

Section B Select one of the two parts

Part 1 Answer 2 of the three

- 1. Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, Σ, μ) such that there is a measurable function f on X with the property that for every $\epsilon > 0$ there is a positive integer N and a measurable set E such that $\mu(E) < \epsilon$ and $|f_n(x) f(x)| < \epsilon$ for all $n \ge N$ and all $x \notin E$. (That is, $\{f_n\}$ converges to f in measure.) Show that there is a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to f$, μ almost everywhere. Show that the converse is also true if $\mu(X) < \infty$.
- 2. (a) Let f be an integrable function on a measure space (X, Σ, μ) . Show that for every $\epsilon > 0$ there exists a measurable function g on X such that $\mu\{x \in X : g(x) \neq 0\} < \infty$, and $\int |f g| d\mu < \epsilon$.
 - (b) Show that the g in part (a) can be chose to be a simple function.
 - (c) If the measure space is the real line with Lebesgue measure, show that the g in part (a) can be chosen to be a step function.

- 3. On the Borel σ -algebra in $[1,\infty)$, let $\mu(E)=\int_E x^{-1}\,dm$. Here m is Lebesgue measure. Show that
 - (a) $\mu \ll m$, $m \ll \mu$.
 - (b) $1 \le p < \infty$, $L^p(m)$ is a proper subset of $L^p(\mu)$.
 - (c) $L^{\infty}(m) = L^{\infty}(\mu)$.

Part 2 Answer 2 of the three

- 1. Find the function u(x,y) that is harmonic in the unit disk |z|<1 and takes on the boundary values $u(\cos\theta,\sin\theta)=\frac{\theta}{2},$ for $-\pi<\theta\leq\pi.$
- 2. Locate the branch points, suggest how the plane should be cut and pasted to form a Riemann surface for the multi-valued function $[(z-1)(z+2)]^{2/3}$. Specify an analytic branch of the function.
- 3. If possible, construct an entire function which takes on the values only in the right half-plane. If this is not possible, explain.