Analysis Qualifying Exam: September 4, 2009

MTH 632: Provide complete solutions to $\underline{5}$ of the $\underline{6}$ questions.

Notation: \mathbb{Q} denotes the set of rational numbers and \mathbb{R} denotes the set of real numbers.

- 1. Assume $A, B, G \subset \mathbb{R}$ and m^* is Lebesgue outer measure on \mathbb{R} . Here \widetilde{G} denotes the complement of G.
 - (a) Suppose G is measurable and $A \subset G$ and let B be such that $B \cap G = \emptyset$. Show $m^*(A \cup B) = m^*(A) + m^*(B)$.
 - (b) Suppose A and B are such that dist $(A, B) = \inf\{|x y| : x \in A, y \in B\} > 0$. Show $m^*(A \cup B) = m^*(A) + m^*(B)$.
- 2. Let $f(x) = \begin{cases} x(1-x) & ; & x \in [0,1] \backslash \mathbb{Q} \\ 1 & ; & x \in [0,1] \cap \mathbb{Q} \end{cases}$. Find $\int_{[0,1]} f \, dm$. Is f Riemann integrable? Explain your answer.
- 3. Let $f \in L^1(\mathbb{R})$. Show there is a sequence $\langle x_n \rangle \subset \mathbb{R}$ with $\lim_{n \to \infty} x_n = \infty$ such that $\lim_{n \to \infty} x_n f(x_n) = 0$.
- 4. Let g be a function defined on \mathbb{R} such that there is a constant $\lambda > 0$ such that

$$|g(x) - g(y)| \le \lambda |x - y|, \quad \forall x, y \in \mathbb{R},$$

i.e. g satisfies a Lipschitz condition on \mathbb{R} and is hence continuous. Let $f \in L^1([a,b])$. Show $g \circ f$, the composition of f and g is Lebesgue integrable on [a,b].

- 5. Let $\langle f_n \rangle$ be a sequence of integrable functions defined on a measurable set $E \subset \mathbb{R}$. The sequence $\langle f_n \rangle$ is said to be **equi-integrable** on E if $\forall \ \epsilon > 0, \ \exists \ \delta > 0$ such that \forall measurable sets $A \subset E$ with $m(A) < \delta$ we have $\int_A |f_n| \, dm < \epsilon, \ \forall \ n$. Suppose $\langle f_n \rangle$ is a convergent sequence, say $f_n \to f$, of equi-integrable functions on a measurable set E, $m(E) < \infty$. Then $\lim_{n \to \infty} \int_E f_n \, dm = \int_E f \, dm$.
- 6. Let $\langle f_n \rangle$ be a sequence of nonnegative measurable functions on a set E such that $\lim_{n \to \infty} \int_E f_n \, dm = 0$. Show $\langle f_n \rangle$ converges to zero in measure. Show convergence in measure cannot be replaced with convergence almost everywhere.

MTH 636: Provide complete solutions to 6 of the 7 questions

1. Let
$$f(z) = \begin{cases} \frac{x^{\frac{4}{3}}y^{\frac{5}{3}} + ix^{\frac{5}{3}}y^{\frac{4}{3}}}{x^2 + y^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Show that the Cauchy-Riemann equations hold at z = 0, but f is not differentiable at z = 0.

- 2. If f(z) = u(x, y) + iv(x, y) is entire such that $au + bv \ge c$ for some real numbers a, b, and c, must f be constant? Prove your answer.
- 3. Let g be a continuous complex-valued function of a real variable on [0, 2], and for each complex number z define

$$F(z) := \int_0^2 e^{zt} g(t) dt.$$

Prove that F is entire, and find its power series around the origin.

4. Find the Laurent series for the function

$$f(z) = \frac{z}{(z+1)(z-2)}$$

in each of the following domains:

(a)
$$|z| < 1$$

(b)
$$1 < |z| < 2$$

(c)
$$2 < |z|$$

- 5. Does there exist a function f(z) analytic in |z| < 1 and satisfying $f(\frac{1}{2}) = \frac{1}{2}$, $f(\frac{1}{3}) = \frac{1}{2}$, $f(\frac{1}{4}) = \frac{1}{4}$, $f(\frac{1}{5}) = \frac{1}{4}$, ..., $f(\frac{1}{2n}) = \frac{1}{2n}$, $f(\frac{1}{2n+1}) = \frac{1}{2n}$, ...? Justify your answer.
- 6. Show that all roots of $z^5 3z^2 1 = 0$ lie inside the circle $|z| = 2^{\frac{2}{3}}$ and two of its roots lie inside the circle $|z| = \frac{3}{4}$.
- 7. Prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+9)^2} dx = \frac{\pi}{6}$.