There are 3 problems. You may submit your answers on the additional paper provided.

- 1. Consider a simple linear regression model $Y = \beta_0 + \beta_1 X + \varepsilon$ in which ε are independent identically distributed random variables N(0, σ^2). Let $Y^* = cY$ where c is a non-zero constant.
 - a) Show the effect that Y^* has on the estimates on β_0 and β_1 .
 - b) When testing H_o: $\beta_1 = 0$, compare $t^* = \frac{b_1^* \beta_1}{SE_{b_1^*}}$ to $t = \frac{b_1 \beta_1}{SE_{b_1}}$. Prove your results.
 - c) Compare R^2 using $Y^* = cY$ with R^2 using just Y. Prove your result.
- 2. Consider the following linear models, in matrix notation, of [Y] = [XB] versus $[Y] = [XB Z\delta]$.
 - a) If [Y] = [XB Zδ] is the true model, show/discuss the results of fitting [Y] = [XB] on the parameter estimates (bias), estimates (Yhat), S, and diagnostics. This is of course an underparameterized model.
 - b) If [Y] = [XB] is the true model, show/discuss the results of fitting [Y] = [XB Zδ] on the parameter estimates, model performance, and diagnostics. This is of course an overparameterized model.
 - c) In your opinion, which of the two misspecifications (under parameterized or over parameterized) is a more difficult problem to detect.
- 3. 3 pieces of gold, weighing a total of 100 grams are weighed 3 times on a non-accurate scale. Here are the results:

Scale	Piece A	Piece B	Piece C
1	30	20	50
2	35	25	55
3	25	20	45

In addition, to assist in estimating the weights, a very accurate double pan balance scale, with two pans like the ones shown below, is being used to compare the 3 separate pieces of gold.

Here are the results of the measurement experiment:

<u>Piece</u>	Piece	Difference
А	В	A: +5 gram
А	С	A: +2 gram
В	С	B: +1 gram

Consider the results of the double pan scale a constriction on the model. Also, as previously mentioned, assume that the 3 pieces weigh a total 100 grams. Given this information, use Least Squares in matrix format to do the following.

- a) State the Response Matrix, Design Matrix, Parameter Matrix, and any other matrices needed to create this estimation problem as a constricted linear model.
- b) Estimate the weight of each of the 3 pieces using this model, subject to the constrictions as previously specified.