General Instruction: Answer all questions. Print your answer, your name, number the pages and number the problems on provided exam paper. Write on one side only.

- 1. Let X_1, \ldots, X_n be iid random variables each having a normal distribution with mean μ and variance σ^2 . Prove that \overline{X} and S^2 are independent. (12)
- 2. Let the random variable X_n have a distribution that is b(n, p). Prove that $(1 X_n/n)$ converges in probability to (1 p). (12)
- 3. Let X_1, X_2, \ldots, X_n be a random sample from a $N(\theta, \sigma^2)$ distribution, where σ^2 is fixed but $-\infty < \theta < \infty$. Show that the mle of θ is \overline{X} . (12)
- 4. Let X_1, X_2, \ldots, X_n be a random sample from a $N(\mu_0, \theta \sigma^2)$ distribution, where $0 < \theta < \infty$ and μ_0 is known. Show that the likelihood ratio test of H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$ can be based upon the statistic

$$W = \frac{\displaystyle\sum_{i=1}^{n} (X_i - \mu_0)^2}{\theta_0}$$

Determine the null distribution of W and give, explicitly, the rejection rule for a level α test. (12)

5. Let $X_1,...,X_{n1}$ be a random sample from the distribution of $X \sim N(\mu_1, \sigma_1^2)$ and let $Y_1,...,Y_{n2}$ be a random sample from the distribution of $Y \sim N(\mu_2, \sigma_2^2)$. Prove that (12)

$$\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \xrightarrow{P} 1$$

- 6. Let $X_1, X_2,..., X_n$ be a random sample from a Poisson distribution having parameter θ , $0 < \theta < \infty$. Prove that the sum of the observations of the random sample of size n is a sufficient statistic for θ . (10)
- 7. If X₁, X₂,...,X_n is a random sample from a distribution having pdf of the form $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, show that a best critical region for testing H₀ : $\theta = 1$ against H₁ : $\theta = 2$ is C = {(x₁, x₂,...,x_n) : $c \le \prod_{i=1}^{n} x_i$ }. (15)

8.

- a. State Neyman–Pearson Theorem. (10)
- b. Prove Neyman–Pearson Theorem. (5)