Bioluminescent Optogenetics Lab Research

Explore the various neuroscience research projects at the Bioluminescent Optogenetics Lab, including research on luminopsins and neural circuitry.

Luminopsins (LMOs)

Luminopsins are fusion proteins of a light-emitting luciferase and a light-sensing optogenetic element (channelrhodopsin or pump). Upon application of the luciferase substrate, coelenterazine, the luciferase emits light which activates the nearby opsin. Depending on the biophysical properties of the opsin, the neuron expressing the LMO will be activated or silenced. We are continuously improving LMOs and broadening the concept of bioluminescence-driven optogenetics. We are also applying our current constructs to address the questions they were designed to answer.

Luminopsins diagram

Applications of LMOs ​

We are interested in the relationship between neuronal activity and shaping of neuronal circuitry resulting in the spectrum of “normal” to “abnormal” behavior. To this end we study the effect of early postnatal neuronal hyper-excitation or hyper-inhibition on adult behavior. These experiments utilize mice genetically engineered to conditionally express luminopsins in defined neuronal populations.

We are also testing if we can utilize experimenter-induced neuronal activity to intervene in the neurodegenerative decline of brain function. Here we study the effect of neuronal excitation on alleviating motor defects in Parkinson’s disease. In these experiments we transplant neuronal stem cells expressing luminopsins into the brain of a genetic mouse model of Parkinson’s disease.

Furthermore, we are exploring the potential therapeutic effects of experimentally manipulated neuronal activity in regenerating injured neuronal circuits. Specifically, we are assessing the effects of stimulating luminopsin expressing spinal cord neurons following spinal cord injury in a rat model.

We are currently looking for stu​dent volunteers who would like to gain valuable laboratory experience and those who would like to complete an honors capstone project and are interested in our ongoing neuroscience research. Please contact Dr. Ute Hochgesc​hwender for more information at

Support and Collaborations

Our work is highly collaborative. Part of these collaborations are supported by the BRAIN Initiative

NSF BRAIN​ Initiative
“NeuroNex Neurotechnology Hub: Bioluminescence for optimal brain control and imaging” Collaboration with Christopher Moore (Brown University, Providence RI), Diane Lipscombe (Brown University, Providence RI) and Nathan Shaner (UC San Diego, San Diego, CA)

For more information please visit NeuroNex.

NIH BRAIN Initiative
"Highly specific control of neurons with photoswitchable bioluminescent optogenetics” Collaboration with Nathan Shaner (UC San Diego, San Diego, CA) and Christopher Moore (Brown University, Providence RI)

Craig H. Neilsen Foundation
“Biological light stimulation to restore function after SCI”  Collaboration with Eric Petersen (MSU, East Lansing, MI)