Skip to main content

Isabella Bank Institute for Entrepreneurship

We are a dedicated institute for student entrepreneurs across campus and beyond. We aim to maximize your success by fostering your entrepreneurial mindset, promote inter-disciplinary collaboration and provide support for the creation and development of your new ventures. Jumpstart your ideas and get involved today!

Tune in for excitement!

Passion. Potential. Pitches. Don't miss any of the 2025 New Venture Challenge excitement.

Tune in Friday, April 11 at 1 p.m. for great ideas and fierce competition. Then, join the judges, mentors, spectators and teams as they see who is going home with thousands of dollars in venture financing. The awards broadcast begins at 6:30 p.m. and one team will walk away as the overall best venture. 

Start your entrepreneurial journey

Central Michigan University’s College of Business Administration is the home of the Isabella Bank Institute for Entrepreneurship and the first Department of Entrepreneurship in the state of Michigan. We are a student-centric hub where experiential, curricular, and external entrepreneurial opportunities intersect.

Our mission is to maximize student success by fostering a campus-wide entrepreneurial mindset that promotes inter-disciplinary collaboration and the creation of new ventures.

We aim to create innovative programming, boost cross-campus and ecosystem collaboration and provide a comprehensive mentoring program.

Our institute provides extracurricular opportunities and is open to all undergraduate and graduate CMU students.

Student opportunities

  • Meet experienced alumni, faculty, entrepreneurs, investors, and other business and political leaders.
  • Learn practical skills, innovative thinking, and connect with mentors and entrepreneurial resources.
  • Attend skill-building workshops and compete in pitch competitions and Hackathons.
  • Take part in special scholarship programs and travel experiences.
  • Pitch your venture at our signature New Venture Challenge event and compete for up to $20,000 in cash awards.

      Find your path

      Are you interested in becoming an entrepreneur?

      Every journey is unique. Explore the opportunities that interest you.

      CMU engineers dive into the impact of anaerobic digestion on health and environment

      by Robert Wang

      Researchers in the School of Engineering and Technology at CMU are embarking on an important mission to understand how certain methods used to treat sewage affect our environment and health. Environmental Engineering faculty member Maggie Williams, School of Engineering and Technology Director Goksel Demirer, and graduate student Yasna Mortezaei are studying a process called anaerobic digestion, which is like a big composting system for waste. They want to see how things like temperature and time impact two key things: antibiotic resistance (which makes infections harder to treat) and the production of biogas, a type of renewable energy.

      To do this, they're collecting samples of sludge from different places where sewage is treated. Then, in their lab, they're running experiments to see how changing conditions affect the way bacteria, antibiotic resistance, and biogas behave during anaerobic digestion.

      Using advanced tools like DNA testing and gas analysis, they're keeping a close eye on how these tiny organisms and gases change under different conditions. This is crucial because antibiotics used in industries like farming and medicine end up in our sewage, where they can cause problems like antibiotic resistance.

      This research matters a lot because antibiotic resistance is becoming a big problem worldwide. If we don't do something about it, it could lead to millions of deaths each year by 2050. Wastewater treatment plants, where sewage gets cleaned, are key spots where these resistant genes can hang around.

      Anaerobic digestion, which is part of sewage treatment, can be a good thing because it helps manage waste and produces renewable energy. But if we don't manage it well, these antibiotic-resistant genes could end up back in our food, making things worse.

      The CMU team hopes their work will not only help us understand how anaerobic digestion affects antibiotic resistance and biogas, but also give us practical tips on how to do it better. By finding ways to tackle antibiotic resistance while improving biogas production, they're aiming to make our waste treatment more sustainable and keep us healthier in the long run.

      Questions?